from collections import OrderedDict import os import sys from typing import Dict import typing import torch if '-h' in sys.argv or '--help' in sys.argv: print(f'Usage: python3 {sys.argv[0]} [--use-gpu] ') if sys.argv[1] == '--use-gpu': device = 'cuda' lora_alpha, base_model, lora, output = float(sys.argv[2]), sys.argv[3], sys.argv[4], sys.argv[5] else: device = 'cpu' lora_alpha, base_model, lora, output = float(sys.argv[1]), sys.argv[2], sys.argv[3], sys.argv[4] with torch.no_grad(): w: Dict[str, torch.Tensor] = torch.load(base_model, map_location='cpu') # merge LoRA-only slim checkpoint into the main weights w_lora: Dict[str, torch.Tensor] = torch.load(lora, map_location='cpu') for k in w_lora.keys(): w[k] = w_lora[k] output_w: typing.OrderedDict[str, torch.Tensor] = OrderedDict() # merge LoRA weights keys = list(w.keys()) for k in keys: if k.endswith('.weight'): prefix = k[:-len('.weight')] lora_A = prefix + '.lora_A' lora_B = prefix + '.lora_B' if lora_A in keys: assert lora_B in keys print(f'merging {lora_A} and {lora_B} into {k}') assert w[lora_B].shape[1] == w[lora_A].shape[0] lora_r = w[lora_B].shape[1] w[k] = w[k].to(device=device) w[lora_A] = w[lora_A].to(device=device) w[lora_B] = w[lora_B].to(device=device) w[k] += w[lora_B] @ w[lora_A] * (lora_alpha / lora_r) output_w[k] = w[k].to(device='cpu', copy=True) del w[k] del w[lora_A] del w[lora_B] continue if 'lora' not in k: print(f'retaining {k}') output_w[k] = w[k].clone() del w[k] torch.save(output_w, output)