File size: 10,014 Bytes
22c864a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
---
license: apache-2.0
language:
- multilingual
- en
- ru
- es
- fr
- de
- it
- pt
- pl
- nl
- vi
- tr
- sv
- id
- ro
- cs
- zh
- hu
- ja
- th
- fi
- fa
- uk
- da
- el
- "no"
- bg
- sk
- ko
- ar
- lt
- ca
- sl
- he
- et
- lv
- hi
- sq
- ms
- az
- sr
- ta
- hr
- kk
- is
- ml
- mr
- te
- af
- gl
- fil
- be
- mk
- eu
- bn
- ka
- mn
- bs
- uz
- ur
- sw
- yue
- ne
- kn
- kaa
- gu
- si
- cy
- eo
- la
- hy
- ky
- tg
- ga
- mt
- my
- km
- tt
- so
- ku
- ps
- pa
- rw
- lo
- ha
- dv
- fy
- lb
- ckb
- mg
- gd
- am
- ug
- ht
- grc
- hmn
- sd
- jv
- mi
- tk
- ceb
- yi
- ba
- fo
- or
- xh
- su
- kl
- ny
- sm
- sn
- co
- zu
- ig
- yo
- pap
- st
- haw
- as
- oc
- cv
- lus
- tet
- gsw
- sah
- br
- rm
- sa
- bo
- om
- se
- ce
- cnh
- ilo
- hil
- udm
- os
- lg
- ti
- vec
- ts
- tyv
- kbd
- ee
- iba
- av
- kha
- to
- tn
- nso
- fj
- zza
- ak
- ada
- otq
- dz
- bua
- cfm
- ln
- chm
- gn
- krc
- wa
- hif
- yua
- srn
- war
- rom
- bik
- pam
- sg
- lu
- ady
- kbp
- syr
- ltg
- myv
- iso
- kac
- bho
- ay
- kum
- qu
- za
- pag
- ngu
- ve
- pck
- zap
- tyz
- hui
- bbc
- tzo
- tiv
- ksd
- gom
- min
- ang
- nhe
- bgp
- nzi
- nnb
- nv
- zxx
- bci
- kv
- new
- mps
- alt
- meu
- bew
- fon
- iu
- abt
- mgh
- mnw
- tvl
- dov
- tlh
- ho
- kw
- mrj
- meo
- crh
- mbt
- emp
- ace
- ium
- mam
- gym
- mai
- crs
- pon
- ubu
- fip
- quc
- gv
- kj
- btx
- ape
- chk
- rcf
- shn
- tzh
- mdf
- ppk
- ss
- gag
- cab
- kri
- seh
- ibb
- tbz
- bru
- enq
- ach
- cuk
- kmb
- wo
- kek
- qub
- tab
- bts
- kos
- rwo
- cak
- tuc
- bum
- cjk
- gil
- stq
- tsg
- quh
- mak
- arn
- ban
- jiv
- sja
- yap
- tcy
- toj
- twu
- xal
- amu
- rmc
- hus
- nia
- kjh
- bm
- guh
- mas
- acf
- dtp
- ksw
- bzj
- din
- zne
- mad
- msi
- mag
- mkn
- kg
- lhu
- ch
- qvi
- mh
- djk
- sus
- mfe
- srm
- dyu
- ctu
- gui
- pau
- inb
- bi
- mni
- guc
- jam
- wal
- jac
- bas
- gor
- skr
- nyu
- noa
- sda
- gub
- nog
- cni
- teo
- tdx
- sxn
- rki
- nr
- frp
- alz
- taj
- lrc
- cce
- rn
- jvn
- hvn
- nij
- dwr
- izz
- msm
- bus
- ktu
- chr
- maz
- tzj
- suz
- knj
- bim
- gvl
- bqc
- tca
- pis
- prk
- laj
- mel
- qxr
- niq
- ahk
- shp
- hne
- spp
- koi
- krj
- quf
- luz
- agr
- tsc
- mqy
- gof
- gbm
- miq
- dje
- awa
- bjj
- qvz
- sjp
- tll
- raj
- kjg
- bgz
- quy
- cbk
- akb
- oj
- ify
- mey
- ks
- cac
- brx
- qup
- syl
- jax
- ff
- ber
- tks
- trp
- mrw
- adh
- smt
- srr
- ffm
- qvc
- mtr
- ann
- kaa
- aa
- noe
- nut
- gyn
- kwi
- xmm
- msb
library_name: ctranslate2
tags:
- text2text-generation
- text-generation-inference
datasets:
- allenai/MADLAD-400
pipeline_tag: translation

widget:
- text: "<2en> Como vai, amigo?"
  example_title: "Translation to English"
- text: "<2de> Do you speak German?"
  example_title: "Translation to German"

---

# MADLAD-400-3B-MT (int8 quantized using CTranslate2)

```
ct2-transformers-converter --model ./madlad400-3b-mt --quantization int8 --output_dir ctranslate-madlad400-3b-mt-8bit --copy_files added_tokens.json generation_config.json special_tokens_map.json spiece.model tokenizer.json tokenizer_config.json
```

---

Original model card below

---


# Model Card for MADLAD-400-3B-MT

#  Table of Contents

0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Usage](#usage)
3. [Uses](#uses)
4. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
5. [Training Details](#training-details)
6. [Evaluation](#evaluation)
7. [Environmental Impact](#environmental-impact)
8. [Citation](#citation)


# TL;DR

MADLAD-400-3B-MT is a multilingual machine translation model based on the T5 architecture that was
trained on 1 trillion tokens covering over 450 languages using publicly available data.
It is competitive with models that are significantly larger.

**Disclaimer**: [Juarez Bochi](https://huggingface.co/jbochi), who was not involved in this research, converted 
the original weights and wrote the contents of this model card based on the original paper and Flan-T5.

# Model Details

## Model Description

- **Model type:** Language model
- **Language(s) (NLP):** Multilingual (400+ languages)
- **License:** Apache 2.0
- **Related Models:** [All MADLAD-400 Checkpoints](https://huggingface.co/models?search=madlad)
- **Original Checkpoints:** [All Original MADLAD-400 Checkpoints](https://github.com/google-research/google-research/tree/master/madlad_400)
- **Resources for more information:**
  - [Research paper](https://arxiv.org/abs/2309.04662)
  - [GitHub Repo](https://github.com/google-research/t5x)
  - [Hugging Face MADLAD-400 Docs (Similar to T5) ](https://huggingface.co/docs/transformers/model_doc/MADLAD-400) - [Pending PR](https://github.com/huggingface/transformers/pull/27471)

# Usage

Find below some example scripts on how to use the model:

## Using the Pytorch model with `transformers`

### Running the model on a CPU or GPU

<details>
<summary> Click to expand </summary>

First, install the Python packages that are required:

`pip install transformers accelerate sentencepiece`

```python
from transformers import T5ForConditionalGeneration, T5Tokenizer

model_name = 'jbochi/madlad400-3b-mt'
model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto")
tokenizer = T5Tokenizer.from_pretrained(model_name)

text = "<2pt> I love pizza!"
input_ids = tokenizer(text, return_tensors="pt").input_ids.to(model.device)
outputs = model.generate(input_ids=input_ids)

tokenizer.decode(outputs[0], skip_special_tokens=True)
# Eu adoro pizza!
```

</details>

## Running the model with Candle

<details>
<summary> Click to expand </summary>

Usage with [candle](https://github.com/huggingface/candle):

```bash
$ cargo run --example t5 --release  -- \
  --model-id "jbochi/madlad400-3b-mt" \
  --prompt "<2de> How are you, my friend?" \
  --decode --temperature 0
```

We also provide a quantized model (1.65 GB vs the original 11.8 GB file):

```
cargo run --example quantized-t5 --release  -- \
  --model-id "jbochi/madlad400-3b-mt" --weight-file "model-q4k.gguf" \
  --prompt "<2de> How are you, my friend?" \
  --temperature 0
...
 Wie geht es dir, mein Freund?
```

</details>


# Uses

## Direct Use and Downstream Use

> Primary intended uses: Machine Translation and multilingual NLP tasks on over 400 languages.
> Primary intended users: Research community.

## Out-of-Scope Use

> These models are trained on general domain data and are therefore not meant to
> work on domain-specific models out-of-the box. Moreover, these research models have not been assessed
> for production usecases.

# Bias, Risks, and Limitations

> We note that we evaluate on only 204 of the languages supported by these models and on machine translation
> and few-shot machine translation tasks. Users must consider use of this model carefully for their own
> usecase.

## Ethical considerations and risks

> We trained these models with MADLAD-400 and publicly available data to create baseline models that
> support NLP for over 400 languages, with a focus on languages underrepresented in large-scale corpora.
> Given that these models were trained with web-crawled datasets that may contain sensitive, offensive or
> otherwise low-quality content despite extensive preprocessing, it is still possible that these issues to the
> underlying training data may cause differences in model performance and toxic (or otherwise problematic)
> output for certain domains. Moreover, large models are dual use technologies that have specific risks
> associated with their use and development. We point the reader to surveys such as those written by
> Weidinger et al. or Bommasani et al. for a more detailed discussion of these risks, and to Liebling
> et al. for a thorough discussion of the risks of machine translation systems.

## Known Limitations

More information needed

## Sensitive Use:

More information needed

# Training Details

> We train models of various sizes: a 3B, 32-layer parameter model,
> a 7.2B 48-layer parameter model and a 10.7B 32-layer parameter model.
> We share all parameters of the model across language pairs,
> and use a Sentence Piece Model with 256k tokens shared on both the encoder and decoder
> side. Each input sentence has a <2xx> token prepended to the source sentence to indicate the target
> language.

See the [research paper](https://arxiv.org/pdf/2309.04662.pdf) for further details.

## Training Data

> For both the machine translation and language model, MADLAD-400 is used. For the machine translation
> model, a combination of parallel datasources covering 157 languages is also used. Further details are
> described in the [paper](https://arxiv.org/pdf/2309.04662.pdf).

## Training Procedure

See the [research paper](https://arxiv.org/pdf/2309.04662.pdf) for further details.

# Evaluation

## Testing Data, Factors & Metrics

> For evaluation, we used WMT, NTREX, Flores-200 and Gatones datasets as described in Section 4.3 in the [paper](https://arxiv.org/pdf/2309.04662.pdf).

> The translation quality of this model varies based on language, as seen in the paper, and likely varies on
> domain, though we have not assessed this.

## Results

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b7f632037d6452a321fa15/EzsMD1AwCuFH0S0DeD-n8.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b7f632037d6452a321fa15/CJ5zCUVy7vTU76Lc8NZcK.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b7f632037d6452a321fa15/NK0S-yVeWuhKoidpLYh3m.png)

See the [research paper](https://arxiv.org/pdf/2309.04662.pdf) for further details.

# Environmental Impact

More information needed

# Citation

**BibTeX:**

```bibtex
@misc{kudugunta2023madlad400,
      title={MADLAD-400: A Multilingual And Document-Level Large Audited Dataset}, 
      author={Sneha Kudugunta and Isaac Caswell and Biao Zhang and Xavier Garcia and Christopher A. Choquette-Choo and Katherine Lee and Derrick Xin and Aditya Kusupati and Romi Stella and Ankur Bapna and Orhan Firat},
      year={2023},
      eprint={2309.04662},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```