brian-yu-nexusflow
commited on
Commit
·
ef90054
1
Parent(s):
51e4adc
Upload 2 files
Browse files- langchain_example.py +147 -0
- non_langchain_example.py +142 -0
langchain_example.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Literal, Union
|
2 |
+
|
3 |
+
import math
|
4 |
+
|
5 |
+
from langchain.tools.base import StructuredTool
|
6 |
+
from langchain.agents import (
|
7 |
+
Tool,
|
8 |
+
AgentExecutor,
|
9 |
+
LLMSingleActionAgent,
|
10 |
+
AgentOutputParser,
|
11 |
+
)
|
12 |
+
from langchain.schema import AgentAction, AgentFinish, OutputParserException
|
13 |
+
from langchain.prompts import StringPromptTemplate
|
14 |
+
from langchain.llms import HuggingFaceTextGenInference
|
15 |
+
from langchain.chains import LLMChain
|
16 |
+
|
17 |
+
|
18 |
+
##########################################################
|
19 |
+
# Step 1: Define the functions you want to articulate. ###
|
20 |
+
##########################################################
|
21 |
+
|
22 |
+
|
23 |
+
def calculator(
|
24 |
+
input_a: float,
|
25 |
+
input_b: float,
|
26 |
+
operation: Literal["add", "subtract", "multiply", "divide"],
|
27 |
+
):
|
28 |
+
"""
|
29 |
+
Computes a calculation.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
input_a (float) : Required. The first input.
|
33 |
+
input_b (float) : Required. The second input.
|
34 |
+
operation (string): The operation. Choices include: add to add two numbers, subtract to subtract two numbers, multiply to multiply two numbers, and divide to divide them.
|
35 |
+
"""
|
36 |
+
match operation:
|
37 |
+
case "add":
|
38 |
+
return input_a + input_b
|
39 |
+
case "subtract":
|
40 |
+
return input_a - input_b
|
41 |
+
case "multiply":
|
42 |
+
return input_a * input_b
|
43 |
+
case "divide":
|
44 |
+
return input_a / input_b
|
45 |
+
|
46 |
+
|
47 |
+
def cylinder_volume(radius, height):
|
48 |
+
"""
|
49 |
+
Calculate the volume of a cylinder.
|
50 |
+
|
51 |
+
Parameters:
|
52 |
+
- radius (float): The radius of the base of the cylinder.
|
53 |
+
- height (float): The height of the cylinder.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
- float: The volume of the cylinder.
|
57 |
+
"""
|
58 |
+
if radius < 0 or height < 0:
|
59 |
+
raise ValueError("Radius and height must be non-negative.")
|
60 |
+
|
61 |
+
volume = math.pi * (radius**2) * height
|
62 |
+
return volume
|
63 |
+
|
64 |
+
|
65 |
+
#############################################################
|
66 |
+
# Step 2: Let's define some utils for building the prompt ###
|
67 |
+
#############################################################
|
68 |
+
|
69 |
+
|
70 |
+
RAVEN_PROMPT = """
|
71 |
+
{raven_tools}
|
72 |
+
User Query: Question: {input}
|
73 |
+
|
74 |
+
Please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>"""
|
75 |
+
|
76 |
+
|
77 |
+
# Set up a prompt template
|
78 |
+
class RavenPromptTemplate(StringPromptTemplate):
|
79 |
+
# The template to use
|
80 |
+
template: str
|
81 |
+
# The list of tools available
|
82 |
+
tools: List[Tool]
|
83 |
+
|
84 |
+
def format(self, **kwargs) -> str:
|
85 |
+
prompt = "<human>:\n"
|
86 |
+
for tool in self.tools:
|
87 |
+
func_signature, func_docstring = tool.description.split(" - ", 1)
|
88 |
+
prompt += f'\nOPTION:\n<func_start>def {func_signature}<func_end>\n<docstring_start>\n"""\n{func_docstring}\n"""\n<docstring_end>\n'
|
89 |
+
kwargs["raven_tools"] = prompt
|
90 |
+
return self.template.format(**kwargs).replace("{{", "{").replace("}}", "}")
|
91 |
+
|
92 |
+
|
93 |
+
class RavenOutputParser(AgentOutputParser):
|
94 |
+
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
|
95 |
+
# Check if agent should finish
|
96 |
+
if "Initial Answer:" in llm_output:
|
97 |
+
return AgentFinish(
|
98 |
+
return_values={
|
99 |
+
"output": llm_output.strip()
|
100 |
+
.split("\n")[1]
|
101 |
+
.replace("Initial Answer: ", "")
|
102 |
+
.strip()
|
103 |
+
},
|
104 |
+
log=llm_output,
|
105 |
+
)
|
106 |
+
else:
|
107 |
+
raise OutputParserException(f"Could not parse LLM output: `{llm_output}`")
|
108 |
+
|
109 |
+
|
110 |
+
##################################################
|
111 |
+
# Step 3: Build the agent with these utilities ###
|
112 |
+
##################################################
|
113 |
+
|
114 |
+
|
115 |
+
inference_server_url = "<YOUR ENDPOINT URL>"
|
116 |
+
assert (
|
117 |
+
inference_server_url is not "<YOUR ENDPOINT URL>"
|
118 |
+
), "Please provide your own HF inference endpoint URL!"
|
119 |
+
|
120 |
+
llm = HuggingFaceTextGenInference(
|
121 |
+
inference_server_url=inference_server_url,
|
122 |
+
temperature=0.001,
|
123 |
+
max_new_tokens=400,
|
124 |
+
do_sample=False,
|
125 |
+
)
|
126 |
+
tools = [
|
127 |
+
StructuredTool.from_function(calculator),
|
128 |
+
StructuredTool.from_function(cylinder_volume),
|
129 |
+
]
|
130 |
+
raven_prompt = RavenPromptTemplate(
|
131 |
+
template=RAVEN_PROMPT, tools=tools, input_variables=["input"]
|
132 |
+
)
|
133 |
+
llm_chain = LLMChain(llm=llm, prompt=raven_prompt)
|
134 |
+
output_parser = RavenOutputParser()
|
135 |
+
agent = LLMSingleActionAgent(
|
136 |
+
llm_chain=llm_chain,
|
137 |
+
output_parser=output_parser,
|
138 |
+
stop=["\nReflection:"],
|
139 |
+
allowed_tools=tools,
|
140 |
+
)
|
141 |
+
agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
|
142 |
+
|
143 |
+
call = agent_chain.run(
|
144 |
+
"I have a cake that is about 3 centimenters high and 200 centimeters in radius. How much cake do I have?"
|
145 |
+
)
|
146 |
+
call = agent_chain.run("What is 1+10?")
|
147 |
+
print(exec(call))
|
non_langchain_example.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal
|
2 |
+
|
3 |
+
import math
|
4 |
+
|
5 |
+
import inspect
|
6 |
+
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
|
10 |
+
##########################################################
|
11 |
+
# Step 1: Define the functions you want to articulate. ###
|
12 |
+
##########################################################
|
13 |
+
|
14 |
+
|
15 |
+
def calculator(
|
16 |
+
input_a: float,
|
17 |
+
input_b: float,
|
18 |
+
operation: Literal["add", "subtract", "multiply", "divide"],
|
19 |
+
):
|
20 |
+
"""
|
21 |
+
Computes a calculation.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
input_a (float) : Required. The first input.
|
25 |
+
input_b (float) : Required. The second input.
|
26 |
+
operation (string): The operation. Choices include: add to add two numbers, subtract to subtract two numbers, multiply to multiply two numbers, and divide to divide them.
|
27 |
+
"""
|
28 |
+
match operation:
|
29 |
+
case "add":
|
30 |
+
return input_a + input_b
|
31 |
+
case "subtract":
|
32 |
+
return input_a - input_b
|
33 |
+
case "multiply":
|
34 |
+
return input_a * input_b
|
35 |
+
case "divide":
|
36 |
+
return input_a / input_b
|
37 |
+
|
38 |
+
|
39 |
+
def cylinder_volume(radius, height):
|
40 |
+
"""
|
41 |
+
Calculate the volume of a cylinder.
|
42 |
+
|
43 |
+
Parameters:
|
44 |
+
- radius (float): The radius of the base of the cylinder.
|
45 |
+
- height (float): The height of the cylinder.
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
- float: The volume of the cylinder.
|
49 |
+
"""
|
50 |
+
if radius < 0 or height < 0:
|
51 |
+
raise ValueError("Radius and height must be non-negative.")
|
52 |
+
|
53 |
+
volume = math.pi * (radius**2) * height
|
54 |
+
return volume
|
55 |
+
|
56 |
+
|
57 |
+
#############################################################
|
58 |
+
# Step 2: Let's define some utils for building the prompt ###
|
59 |
+
#############################################################
|
60 |
+
|
61 |
+
|
62 |
+
def format_functions_for_prompt(*functions):
|
63 |
+
formatted_functions = []
|
64 |
+
for func in functions:
|
65 |
+
source_code = inspect.getsource(func)
|
66 |
+
docstring = inspect.getdoc(func)
|
67 |
+
formatted_functions.append(
|
68 |
+
f"OPTION:\n<func_start>{source_code}<func_end>\n<docstring_start>\n{docstring}\n<docstring_end>"
|
69 |
+
)
|
70 |
+
return "\n".join(formatted_functions)
|
71 |
+
|
72 |
+
|
73 |
+
##############################
|
74 |
+
# Step 3: Construct Prompt ###
|
75 |
+
##############################
|
76 |
+
|
77 |
+
|
78 |
+
def construct_prompt(user_query: str):
|
79 |
+
formatted_prompt = format_functions_for_prompt(calculator, cylinder_volume)
|
80 |
+
formatted_prompt += f"\n\nUser Query: Question: {user_query}\n"
|
81 |
+
|
82 |
+
prompt = (
|
83 |
+
"<human>:\n"
|
84 |
+
+ formatted_prompt
|
85 |
+
+ "Please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>"
|
86 |
+
)
|
87 |
+
return prompt
|
88 |
+
|
89 |
+
|
90 |
+
#######################################
|
91 |
+
# Step 4: Execute the function call ###
|
92 |
+
#######################################
|
93 |
+
|
94 |
+
|
95 |
+
def execute_function_call(model_output):
|
96 |
+
# Ignore everything after "Reflection" since that is not essential.
|
97 |
+
function_call = (
|
98 |
+
model_output[0]["generated_text"]
|
99 |
+
.strip()
|
100 |
+
.split("\n")[1]
|
101 |
+
.replace("Initial Answer:", "")
|
102 |
+
.strip()
|
103 |
+
)
|
104 |
+
|
105 |
+
try:
|
106 |
+
return eval(function_call)
|
107 |
+
except Exception as e:
|
108 |
+
return str(e)
|
109 |
+
|
110 |
+
|
111 |
+
if __name__ == "__main__":
|
112 |
+
# Build the model
|
113 |
+
text_gen = pipeline(
|
114 |
+
"text-generation",
|
115 |
+
model="Nexusflow/NexusRaven-13B",
|
116 |
+
device="cuda",
|
117 |
+
)
|
118 |
+
|
119 |
+
# Comp[ute a Simple equation
|
120 |
+
prompt = construct_prompt("What is 1+10?")
|
121 |
+
model_output = text_gen(
|
122 |
+
prompt, do_sample=False, max_new_tokens=400, return_full_text=False
|
123 |
+
)
|
124 |
+
result = execute_function_call(model_output)
|
125 |
+
|
126 |
+
print("Model Output:", model_output)
|
127 |
+
print("Execution Result:", result)
|
128 |
+
|
129 |
+
prompt = construct_prompt(
|
130 |
+
"I have a cake that is about 3 centimenters high and 200 centimeters in diameter. How much cake do I have?"
|
131 |
+
)
|
132 |
+
model_output = text_gen(
|
133 |
+
prompt,
|
134 |
+
do_sample=False,
|
135 |
+
max_new_tokens=400,
|
136 |
+
return_full_text=False,
|
137 |
+
stop=["\nReflection:"],
|
138 |
+
)
|
139 |
+
result = execute_function_call(model_output)
|
140 |
+
|
141 |
+
print("Model Output:", model_output)
|
142 |
+
print("Execution Result:", result)
|