File size: 1,574 Bytes
04d182f 58d0c99 9cc8a7f b546158 9cc8a7f 58d0c99 9cc8a7f 58d0c99 9cc8a7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
language:
- vi
pipeline_tag: sentence-similarity
---
# NghiemAbe/sami-sbert-CT
🐱 <a href="https://github.com/nguyenvannghiem0312/SAMI_Q-A" target="_blank">Github Repo</a>
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
I use pretrained model [bkai-foundation-models/vietnamese-bi-encoder](https://huggingface.co/bkai-foundation-models/vietnamese-bi-encoder) and train the model on SAMI dataset.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
# INPUT TEXT MUST BE ALREADY WORD-SEGMENTED!
sentences = ["Cô ấy là một người vui_tính .", "Cô ấy cười nói suốt cả ngày ."]
model = SentenceTransformer('NghiemAbe/sami-sbert-CT')
embeddings = model.encode(sentences)
print(embeddings)
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
``` |