--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy base_model: google/vit-base-patch16-224 model-index: - name: vit-base-patch16-224 results: [] --- # ## labels - 0: Object - 1: Recycle - 2: Non-Recycle # vit-base-patch16-224 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1510 - Accuracy: 0.9443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 60 - eval_batch_size: 60 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 240 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1438 | 1.0 | 150 | 0.1645 | 0.9353 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3