--- library_name: transformers license: apache-2.0 base_model: alignment-handbook/zephyr-7b-sft-full tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: zephyr-7b-uf-dpo-2e results: [] --- # zephyr-7b-uf-dpo-2e This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.5016 - Rewards/chosen: -1.5911 - Rewards/rejected: -2.8172 - Rewards/accuracies: 0.7695 - Rewards/margins: 1.2260 - Logps/rejected: -544.3789 - Logps/chosen: -421.7447 - Logits/rejected: 2.2404 - Logits/chosen: 1.4759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5692 | 0.4184 | 100 | 0.5671 | -0.3691 | -0.9295 | 0.7344 | 0.5604 | -355.6129 | -299.5389 | -1.1363 | -1.3128 | | 0.5056 | 0.8368 | 200 | 0.5104 | -0.9550 | -1.8507 | 0.7852 | 0.8957 | -447.7286 | -358.1263 | 1.4954 | 0.9604 | | 0.3744 | 1.2552 | 300 | 0.5120 | -1.3455 | -2.5618 | 0.7617 | 1.2163 | -518.8406 | -397.1791 | 1.8527 | 0.9871 | | 0.351 | 1.6736 | 400 | 0.5019 | -1.5195 | -2.7388 | 0.7695 | 1.2193 | -536.5389 | -414.5813 | 2.1782 | 1.4005 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.1.2+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1