update model card README.md
Browse files
README.md
CHANGED
@@ -1,27 +1,79 @@
|
|
1 |
---
|
|
|
|
|
|
|
2 |
datasets:
|
3 |
- reddit
|
4 |
metrics:
|
5 |
- rouge
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
---
|
7 |
|
8 |
-
|
|
|
9 |
|
10 |
-
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
inputs = tokenizer(input_txt, max_length=1024, return_tensors="pt")
|
21 |
-
summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=0, max_length=60)
|
22 |
-
summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
23 |
|
24 |
-
|
25 |
-
```
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
datasets:
|
6 |
- reddit
|
7 |
metrics:
|
8 |
- rouge
|
9 |
+
model-index:
|
10 |
+
- name: distilbart-cnn-6-6-reddit
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Sequence-to-sequence Language Modeling
|
14 |
+
type: text2text-generation
|
15 |
+
dataset:
|
16 |
+
name: reddit
|
17 |
+
type: reddit
|
18 |
+
config: default
|
19 |
+
split: train
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Rouge1
|
23 |
+
type: rouge
|
24 |
+
value: 0.1849
|
25 |
---
|
26 |
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
|
30 |
+
# distilbart-cnn-6-6-reddit
|
31 |
|
32 |
+
This model is a fine-tuned version of [sshleifer/distilbart-cnn-6-6](https://huggingface.co/sshleifer/distilbart-cnn-6-6) on the reddit dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 2.9883
|
35 |
+
- Rouge1: 0.1849
|
36 |
+
- Rouge2: 0.0437
|
37 |
+
- Rougel: 0.1273
|
38 |
+
- Rougelsum: 0.1601
|
39 |
|
40 |
+
## Model description
|
41 |
|
42 |
+
More information needed
|
|
|
|
|
|
|
43 |
|
44 |
+
## Intended uses & limitations
|
|
|
45 |
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training and evaluation data
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training procedure
|
53 |
+
|
54 |
+
### Training hyperparameters
|
55 |
+
|
56 |
+
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 0.0001
|
58 |
+
- train_batch_size: 16
|
59 |
+
- eval_batch_size: 16
|
60 |
+
- seed: 42
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- num_epochs: 3
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
68 |
+
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|
|
69 |
+
| 3.13 | 1.0 | 238116 | 3.2736 | 0.1773 | 0.0392 | 0.1223 | 0.1539 |
|
70 |
+
| 2.8586 | 2.0 | 476232 | 3.0449 | 0.1846 | 0.0431 | 0.127 | 0.1601 |
|
71 |
+
| 2.7844 | 3.0 | 714348 | 2.9883 | 0.1849 | 0.0437 | 0.1273 | 0.1601 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.25.1
|
77 |
+
- Pytorch 1.13.1+cu116
|
78 |
+
- Datasets 2.8.0
|
79 |
+
- Tokenizers 0.13.2
|