End of training
Browse files- README.md +80 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Rostlab/prot_bert
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: prot_bert-fine-tuned-toxicity_3
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# prot_bert-fine-tuned-toxicity_3
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [Rostlab/prot_bert](https://huggingface.co/Rostlab/prot_bert) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 1.0450
|
23 |
+
- Accuracy: 0.7419
|
24 |
+
- Precision: 0.7530
|
25 |
+
- Recall: 0.7419
|
26 |
+
- F1: 0.7340
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 15
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
58 |
+
| 0.5735 | 1.0 | 16 | 0.5968 | 0.8065 | 0.8093 | 0.8065 | 0.8044 |
|
59 |
+
| 0.4855 | 2.0 | 32 | 0.4939 | 0.8387 | 0.8391 | 0.8387 | 0.8380 |
|
60 |
+
| 0.3499 | 3.0 | 48 | 0.5234 | 0.8065 | 0.8093 | 0.8065 | 0.8044 |
|
61 |
+
| 0.3094 | 4.0 | 64 | 0.4639 | 0.8387 | 0.8391 | 0.8387 | 0.8380 |
|
62 |
+
| 0.235 | 5.0 | 80 | 0.5654 | 0.8387 | 0.8391 | 0.8387 | 0.8380 |
|
63 |
+
| 0.1608 | 6.0 | 96 | 0.6409 | 0.8387 | 0.8391 | 0.8387 | 0.8380 |
|
64 |
+
| 0.1147 | 7.0 | 112 | 0.6271 | 0.8387 | 0.8391 | 0.8387 | 0.8380 |
|
65 |
+
| 0.171 | 8.0 | 128 | 0.7704 | 0.8065 | 0.8093 | 0.8065 | 0.8044 |
|
66 |
+
| 0.1762 | 9.0 | 144 | 0.7978 | 0.8065 | 0.8093 | 0.8065 | 0.8044 |
|
67 |
+
| 0.1438 | 10.0 | 160 | 0.9561 | 0.7419 | 0.7530 | 0.7419 | 0.7340 |
|
68 |
+
| 0.0953 | 11.0 | 176 | 1.0074 | 0.7419 | 0.7530 | 0.7419 | 0.7340 |
|
69 |
+
| 0.0394 | 12.0 | 192 | 1.0037 | 0.7419 | 0.7530 | 0.7419 | 0.7340 |
|
70 |
+
| 0.0896 | 13.0 | 208 | 1.0128 | 0.7419 | 0.7530 | 0.7419 | 0.7340 |
|
71 |
+
| 0.0849 | 14.0 | 224 | 1.0404 | 0.7419 | 0.7530 | 0.7419 | 0.7340 |
|
72 |
+
| 0.0207 | 15.0 | 240 | 1.0450 | 0.7419 | 0.7530 | 0.7419 | 0.7340 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.41.2
|
78 |
+
- Pytorch 2.3.0+cu121
|
79 |
+
- Datasets 2.20.0
|
80 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1686085368
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2110148c4ba9fcd75c7e6ca384151f536d75f942fedfab633ca867beb5bb2ad3
|
3 |
size 1686085368
|