File size: 13,789 Bytes
6617cf5
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e64702f2440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e64702f24d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e64702f2560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e64702f25f0>", "_build": "<function ActorCriticPolicy._build at 0x7e64702f2680>", "forward": "<function ActorCriticPolicy.forward at 0x7e64702f2710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e64702f27a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e64702f2830>", "_predict": "<function ActorCriticPolicy._predict at 0x7e64702f28c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e64702f2950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e64702f29e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e64702f2a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e6470292700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719655715065382107, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMjF717Xoe6YrAaNJc6kS63tgS6nNOgswAAgD8AAIA/k3pqPnUaAT8OyxW9liWEvktVgD27RWm9AAAAAAAAAAAzSwK8rmGFuo6nHrlXwxG0BIkJuhosNzgAAIA/AACAP2YwLL2Pxk+6xlKFObcAvzMlmXg5TcabuAAAgD8AAIA/zWPMPNdTLrmJVsc28ZOWMepLw7oF+ei1AACAPwAAgD8moLu94yAtPZOFdzyAUSO+Um2ePD2dcj0AAAAAAAAAAGb6P7wpEFu6+/YltcJIkrAd4oq67qNYNAAAgD8AAIA/M1U6PPYoMrpGiXE7P3MVNsF2M7sKgxM1AACAPwAAgD8AcGA8bG/kPthIb71gxIi+kCFhO7LlU7wAAAAAAAAAAADCBj32KDi6vu6Puy2RczhpxoE7CMzoOAAAgD8AAIA/TX4DPdH1kz0KWRy+Bkwavqp1vL2A4GU9AAAAAAAAAABmHAc9jy48ujvygzl1VCg0/zuCOuRZnLgAAIA/AACAP5r9QLz2wFS6PqdyO1yvWjYCgzO77BSPugAAgD8AAIA/gLACvYVj3rkyoh22wkEIsTQnwDhxbkQ1AACAPwAAgD9mPHw8FCKLujI84jsak98z6yg3O3NAYjMAAIA/AACAPzN7wrzDWSG6JrJWun5aD7a6OCm6te16OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGP0RKYiPhiMAWyUTegDjAF0lEdAkgNZ1zQu3HV9lChoBkdAYNXu5z5oG2gHTegDaAhHQJIDzfNzKcN1fZQoaAZHQE2I5vLowEhoB002AWgIR0CSCUiqQzUJdX2UKGgGR0BJrQQ176YWaAdNHgFoCEdAkg07lq8DjnV9lChoBkdAch814Pf8/GgHTU0BaAhHQJIPGfEn9eh1fZQoaAZHQF9xhWHUMG5oB03oA2gIR0CSD5+lCTlldX2UKGgGR0Bf09DQZ4wAaAdN6ANoCEdAkhGY77sOXnV9lChoBkdAY9LCngpBomgHTegDaAhHQJIUWBg/keZ1fZQoaAZHQGQsx+KCQLhoB03oA2gIR0CSFrKk2xY8dX2UKGgGR0BjmRk9U0emaAdN6ANoCEdAkhgw5/9YOnV9lChoBkdAZOrcxj8UEmgHTegDaAhHQJIZG33Hq/x1fZQoaAZHQGYslWn0kGBoB03oA2gIR0CSHIgNwzcidX2UKGgGR0BOdm8Empl0aAdNOQFoCEdAkiUhfWtlqnV9lChoBkdAZYA1UlzEJmgHTegDaAhHQJI/sVuaWop1fZQoaAZHQGVnl+mWMS9oB03oA2gIR0CSQeezlcQidX2UKGgGR0BiFQwmE5AAaAdN6ANoCEdAkki+NtIkJXV9lChoBkdAYOq0ngHeJ2gHTegDaAhHQJJNJEsrd311fZQoaAZHQGP6px3mmtRoB03oA2gIR0CST0FM7EHddX2UKGgGR0BlXswFkhA4aAdN6ANoCEdAkk+pdrwfAHV9lChoBkdAYjsBoVVPvmgHTegDaAhHQJJVTwWnCO51fZQoaAZHQGKY1U+9rXVoB03oA2gIR0CSWY101ZTydX2UKGgGR0BlMkpy6tknaAdN6ANoCEdAkltmz4UN8XV9lChoBkdAZKOhHLA572gHTegDaAhHQJJb64Ajps51fZQoaAZHQGBTvkq+ajNoB03oA2gIR0CSXeWaMJhOdX2UKGgGR0Bu7dbRnezlaAdNmgFoCEdAkl8DxgAp8XV9lChoBkdAZC5j3Ehq02gHTegDaAhHQJJkDxLCemN1fZQoaAZHQGLEuO0b961oB03oA2gIR0CSZhUL2HtXdX2UKGgGR0Biz6pT/ACXaAdN6ANoCEdAkmdVFUhmoXV9lChoBkdAYqXIBikO7WgHTegDaAhHQJJrz9VFQVN1fZQoaAZHQGSJuzQeFL5oB03oA2gIR0CSdBECeVcEdX2UKGgGR0BORlUyYXwcaAdNDgFoCEdAknXYe9zwMHV9lChoBkdAX/KQKa5PM2gHTegDaAhHQJKLQKu0TlF1fZQoaAZHQGCY477sOXpoB03oA2gIR0CSjU7b+Lm7dX2UKGgGR0Bk42yC4BmxaAdN6ANoCEdAkpn5nctXgnV9lChoBkdAYxB3AVO9FmgHTegDaAhHQJKdLQ9ic5N1fZQoaAZHQGOK32VVxS5oB03oA2gIR0CSnb1schkidX2UKGgGR0BoNZHiFTNuaAdN6ANoCEdAkqRS9ugpSnV9lChoBkdAavWJemelK2gHTd0DaAhHQJKoZbbDdgx1fZQoaAZHQGCSHSncclxoB03oA2gIR0CSqymZVn27dX2UKGgGR0BbuASOBDohaAdN6ANoCEdAkqu+rdWQwXV9lChoBkdAYi56JIlMRGgHTegDaAhHQJKt82sJY1Z1fZQoaAZHQGR9+I/JNj9oB03oA2gIR0CSrzvr4WUKdX2UKGgGR0BmkoXhwVCYaAdN6ANoCEdAkrPVu76HkHV9lChoBkdAY+nRGc4HX2gHTegDaAhHQJK2yNJe3QV1fZQoaAZHQEbxvKlpGnZoB0vuaAhHQJK6QxL0z0p1fZQoaAZHQGGsvIGQjlhoB03oA2gIR0CSuvOfNA1OdX2UKGgGR0Bj5+w/xDsuaAdN6ANoCEdAksS47Rv3rXV9lChoBkdAY7hdLQHAymgHTegDaAhHQJLGxcX3xnZ1fZQoaAZHQGV3g+IMz/JoB03oA2gIR0CSzB4AS39adX2UKGgGR0BiN10YCQtBaAdN6ANoCEdAkuJ2J79hqnV9lChoBkdAYINZaFEiMmgHTegDaAhHQJLu1oCdSVJ1fZQoaAZHQGFbofKZDzBoB03oA2gIR0CS8WgKnei0dX2UKGgGR0Bkmnt6X0GvaAdN6ANoCEdAkvHcmfGuLnV9lChoBkdAYdljebd8A2gHTegDaAhHQJL4M9TxXn11fZQoaAZHQGA6OjqOcUdoB03oA2gIR0CS/BuSOinHdX2UKGgGR0Bkzt9KEnLJaAdN6ANoCEdAkv+hU70WdnV9lChoBkdAYjBvphWo32gHTegDaAhHQJMDGzWwu/V1fZQoaAZHQF9wN+9alk9oB03oA2gIR0CTBJWZZ0SzdX2UKGgGR0BjITtJFspHaAdN6ANoCEdAkwlwkxASnXV9lChoBkdAYDKad+Xqq2gHTegDaAhHQJMLkCq6vq11fZQoaAZHQGKdvOhTOxBoB03oA2gIR0CTDlC9ytFKdX2UKGgGR0BDHSjHn2ZiaAdNAQFoCEdAkw6/60pmVnV9lChoBkdAZLDAxi5NGmgHTegDaAhHQJMO2EpRXOp1fZQoaAZHQG4gafapPyloB00nA2gIR0CTEW52Qnx8dX2UKGgGR0Be3j9wWFewaAdN6ANoCEdAkxXkVeruIHV9lChoBkdAYyN2qT8pC2gHTegDaAhHQJMXYa3qiXZ1fZQoaAZHQGNPuLaVUuNoB03oA2gIR0CTLlK3d9DydX2UKGgGR0Bj3BddE9dNaAdN6ANoCEdAkz0mXC0ngHV9lChoBkdAZPcTfR/mT2gHTegDaAhHQJM/fWattAN1fZQoaAZHQGd3lX7tReloB03oA2gIR0CTP+Vn27FsdX2UKGgGR0BjrDjaPCEYaAdN6ANoCEdAk0Xfk/8l5XV9lChoBkdAYCgBoVVPvmgHTegDaAhHQJNKaOyVv/B1fZQoaAZHQGSkYOUdJatoB03oA2gIR0CTUaw2VE/jdX2UKGgGR0BiEXXmNipeaAdN6ANoCEdAk1NKBAfMfXV9lChoBkdAZxgIkZ75VWgHTegDaAhHQJNXowJw84h1fZQoaAZHQGWc8LSeAd5oB03oA2gIR0CTWl0gr6LwdX2UKGgGR0BkLVayKNyYaAdN6ANoCEdAk12E+cH4XXV9lChoBkdAXOUj4YaYNWgHTegDaAhHQJNd/69CeEt1fZQoaAZHQGXWlQ/HHWBoB03oA2gIR0CTXhzAvcrRdX2UKGgGR0BOAUmdAgPmaAdL8WgIR0CTYLlZowmFdX2UKGgGR0BiXuz8gpz+aAdN6ANoCEdAk2EOymhufnV9lChoBkdAZYwwblzU7WgHTegDaAhHQJNm9PDYRNB1fZQoaAZHQF7z5z5oGpxoB03oA2gIR0CTaUzqKP4mdX2UKGgGR0Be6q6nR9gGaAdN6ANoCEdAk3EAskIHDHV9lChoBkdAZHmews5GSmgHTegDaAhHQJOPhUvPC2t1fZQoaAZHQGhq0SqU/wBoB03oA2gIR0CTkiXA/LTydX2UKGgGR0Be8QC0WuYAaAdN6ANoCEdAk5KZf2K2rnV9lChoBkdAPx4KtxMnJGgHS/5oCEdAk5Nt56dDpnV9lChoBkdAZvQBHTZxrGgHTegDaAhHQJOYx5MURFt1fZQoaAZHQF5166J66atoB03oA2gIR0CTndsiB5HFdX2UKGgGR0Bg+VByCFsYaAdN6ANoCEdAk6TmnXNC7nV9lChoBkdAYgT7eEZiu2gHTegDaAhHQJOqjjin5zp1fZQoaAZHQGNRz/IbOu9oB03oA2gIR0CTrUcZ9/jLdX2UKGgGR0BgOa+8Gs3iaAdN6ANoCEdAk7B907r9l3V9lChoBkdAY/YttALRbGgHTegDaAhHQJOw+4MF2V51fZQoaAZHQGNxPjn3cpNoB03oA2gIR0CTsRgkka/AdX2UKGgGR0BhSCJj2BataAdN6ANoCEdAk7OLB9Cu2nV9lChoBkdAZFWYgq3EymgHTegDaAhHQJOz0wblzU91fZQoaAZHQGbDscyWRihoB03oA2gIR0CTuGP4VRDUdX2UKGgGR0BgF0o4MnZ1aAdN6ANoCEdAk7nr1yvLYHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Tue Jun 18 14:18:04 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}