NimaZahedinameghi commited on
Commit
dd6d74c
1 Parent(s): 33bbb7a

End of training

Browse files
Files changed (1) hide show
  1. README.md +164 -0
README.md ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-v0.1
3
+ library_name: peft
4
+ license: apache-2.0
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: WHI
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ base_model: mistralai/Mistral-7B-v0.1
22
+ model_type: MistralForCausalLM
23
+ tokenizer_type: LlamaTokenizer
24
+
25
+ load_in_8bit: true
26
+ load_in_4bit: false
27
+ strict: false
28
+
29
+ datasets:
30
+ - path: NimaZahedinameghi/Workplace-Hazard-Identification
31
+ type: alpaca
32
+ dataset_prepared_path: last_run_prepared
33
+ val_set_size: 0.1
34
+ output_dir: ./outputs/lora-out
35
+ hub_model_id: NimaZahedinameghi/WHI
36
+
37
+
38
+ adapter: lora
39
+ lora_model_dir:
40
+
41
+ sequence_len: 8192
42
+ sample_packing: False
43
+ pad_to_sequence_len: true
44
+
45
+ lora_r: 32
46
+ lora_alpha: 16
47
+ lora_dropout: 0.05
48
+ lora_target_linear: true
49
+ lora_fan_in_fan_out:
50
+ lora_target_modules:
51
+ - gate_proj
52
+ - down_proj
53
+ - up_proj
54
+ - q_proj
55
+ - v_proj
56
+ - k_proj
57
+ - o_proj
58
+
59
+ wandb_project: WHI
60
+ wandb_entity: uqam
61
+ wandb_watch:
62
+ wandb_name:
63
+ wandb_log_model:
64
+
65
+ gradient_accumulation_steps: 4
66
+ micro_batch_size: 2
67
+ num_epochs: 2
68
+ optimizer: adamw_bnb_8bit
69
+ lr_scheduler: cosine
70
+ learning_rate: 0.0002
71
+
72
+ train_on_inputs: false
73
+ group_by_length: false
74
+ bf16: auto
75
+ fp16:
76
+ tf32: false
77
+
78
+ gradient_checkpointing: true
79
+ early_stopping_patience:
80
+ resume_from_checkpoint:
81
+ local_rank:
82
+ logging_steps: 1
83
+ xformers_attention:
84
+ flash_attention: true
85
+
86
+ loss_watchdog_threshold: 5.0
87
+ loss_watchdog_patience: 3
88
+
89
+ warmup_steps: 10
90
+ evals_per_epoch: 4
91
+ eval_table_size:
92
+ eval_max_new_tokens: 128
93
+ saves_per_epoch: 1
94
+ debug:
95
+ deepspeed:
96
+ weight_decay: 0.0
97
+ fsdp:
98
+ fsdp_config:
99
+ special_tokens:
100
+ bos_token: "<s>"
101
+ eos_token: "</s>"
102
+ unk_token: "<unk>"
103
+ save_safetensors: true
104
+
105
+ ```
106
+
107
+ </details><br>
108
+
109
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/uqam/WHI/runs/eceu99hm)
110
+ # WHI
111
+
112
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
113
+ It achieves the following results on the evaluation set:
114
+ - Loss: 0.2845
115
+
116
+ ## Model description
117
+
118
+ More information needed
119
+
120
+ ## Intended uses & limitations
121
+
122
+ More information needed
123
+
124
+ ## Training and evaluation data
125
+
126
+ More information needed
127
+
128
+ ## Training procedure
129
+
130
+ ### Training hyperparameters
131
+
132
+ The following hyperparameters were used during training:
133
+ - learning_rate: 0.0002
134
+ - train_batch_size: 2
135
+ - eval_batch_size: 2
136
+ - seed: 42
137
+ - gradient_accumulation_steps: 4
138
+ - total_train_batch_size: 8
139
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
140
+ - lr_scheduler_type: cosine
141
+ - lr_scheduler_warmup_steps: 10
142
+ - num_epochs: 2
143
+
144
+ ### Training results
145
+
146
+ | Training Loss | Epoch | Step | Validation Loss |
147
+ |:-------------:|:------:|:----:|:---------------:|
148
+ | 1.0331 | 0.0076 | 1 | 1.0164 |
149
+ | 0.3599 | 0.2505 | 33 | 0.3364 |
150
+ | 0.3004 | 0.5009 | 66 | 0.3113 |
151
+ | 0.274 | 0.7514 | 99 | 0.2991 |
152
+ | 0.2273 | 1.0019 | 132 | 0.2860 |
153
+ | 0.1722 | 1.2524 | 165 | 0.2868 |
154
+ | 0.2038 | 1.5028 | 198 | 0.2863 |
155
+ | 0.2167 | 1.7533 | 231 | 0.2845 |
156
+
157
+
158
+ ### Framework versions
159
+
160
+ - PEFT 0.11.1
161
+ - Transformers 4.42.4
162
+ - Pytorch 2.3.1+cu121
163
+ - Datasets 2.19.1
164
+ - Tokenizers 0.19.1