--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: test args: cord metrics: - name: Precision type: precision value: 0.9479940564635958 - name: Recall type: recall value: 0.9550898203592815 - name: F1 type: f1 value: 0.9515287099179717 - name: Accuracy type: accuracy value: 0.9562818336162988 --- # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2163 - Precision: 0.9480 - Recall: 0.9551 - F1: 0.9515 - Accuracy: 0.9563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 3.12 | 250 | 0.8807 | 0.7910 | 0.8301 | 0.8101 | 0.8247 | | 1.2597 | 6.25 | 500 | 0.4375 | 0.8808 | 0.9072 | 0.8938 | 0.9117 | | 1.2597 | 9.38 | 750 | 0.3119 | 0.9185 | 0.9364 | 0.9274 | 0.9423 | | 0.2869 | 12.5 | 1000 | 0.2700 | 0.9340 | 0.9424 | 0.9382 | 0.9452 | | 0.2869 | 15.62 | 1250 | 0.2401 | 0.9429 | 0.9513 | 0.9471 | 0.9559 | | 0.1378 | 18.75 | 1500 | 0.2295 | 0.9415 | 0.9521 | 0.9468 | 0.9550 | | 0.1378 | 21.88 | 1750 | 0.2183 | 0.9523 | 0.9566 | 0.9544 | 0.9580 | | 0.0866 | 25.0 | 2000 | 0.2190 | 0.9523 | 0.9566 | 0.9544 | 0.9576 | | 0.0866 | 28.12 | 2250 | 0.2168 | 0.9508 | 0.9551 | 0.9529 | 0.9567 | | 0.066 | 31.25 | 2500 | 0.2163 | 0.9480 | 0.9551 | 0.9515 | 0.9563 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.0 - Datasets 2.10.1 - Tokenizers 0.13.2