nhanv commited on
Commit
04aff94
1 Parent(s): 090b7e0

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -0
README.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - vi
4
+
5
+ tags:
6
+ - t5
7
+ - seq2seq
8
+
9
+ # Machine translation for vietnamese
10
+ ## Model Description
11
+ T5-vi-en-base is a transformer model for vietnamese machine translation designed using T5 architecture.
12
+ ## Training data
13
+ T5-vi-en-base was trained on 4M sentence pairs (english,vietnamese)
14
+ ### How to use
15
+
16
+ ```py
17
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
18
+ import torch
19
+ if torch.cuda.is_available():
20
+ device = torch.device("cuda")
21
+
22
+ print('There are %d GPU(s) available.' % torch.cuda.device_count())
23
+
24
+ print('We will use the GPU:', torch.cuda.get_device_name(0))
25
+ else:
26
+ print('No GPU available, using the CPU instead.')
27
+ device = torch.device("cpu")
28
+
29
+ model = T5ForConditionalGeneration.from_pretrained("NlpHUST/t5-vi-en-base")
30
+ tokenizer = T5Tokenizer.from_pretrained("NlpHUST/t5-vi-en-base")
31
+ model.to(device)
32
+
33
+ src = "Theo lãnh đạo Sở Y tế, 3 người này không có triệu chứng sốt, ho, khó thở, đã được lấy mẫu xét nghiệm và cách ly tập trung."
34
+ tokenized_text = tokenizer.encode(src, return_tensors="pt").to(device)
35
+ model.eval()
36
+ summary_ids = model.generate(
37
+ tokenized_text,
38
+ max_length=256,
39
+ num_beams=5,
40
+ repetition_penalty=2.5,
41
+ length_penalty=1.0,
42
+ early_stopping=True
43
+ )
44
+ output = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
45
+ print(output)
46
+
47
+ According to the head of the Department of Health, the three people had no symptoms of fever, cough, shortness of breath, were taken samples for testing and concentrated quarantine.
48
+ ```