Upload 0001-karras-v2-experimental.patch
Browse files
patch/0001-karras-v2-experimental.patch
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
From 36078b25801787f0a0f145143637f46d33d8c389 Mon Sep 17 00:00:00 2001
|
2 |
+
From: Ashen <git123@gmail.com>
|
3 |
+
Date: Fri, 7 Apr 2023 22:04:35 -0700
|
4 |
+
Subject: [PATCH] karras v2 experimental
|
5 |
+
|
6 |
+
---
|
7 |
+
k_diffusion/sampling.py | 36 ++++++++++++++++++++++++++++++++++++
|
8 |
+
1 file changed, 36 insertions(+)
|
9 |
+
|
10 |
+
diff --git a/k_diffusion/sampling.py b/k_diffusion/sampling.py
|
11 |
+
index f050f88..4d5df2a 100644
|
12 |
+
--- a/k_diffusion/sampling.py
|
13 |
+
+++ b/k_diffusion/sampling.py
|
14 |
+
@@ -605,3 +605,39 @@ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=No
|
15 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
|
16 |
+
old_denoised = denoised
|
17 |
+
return x
|
18 |
+
+
|
19 |
+
+
|
20 |
+
+@torch.no_grad()
|
21 |
+
+def sample_dpmpp_2m_test(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
22 |
+
+ """DPM-Solver++(2M)."""
|
23 |
+
+ extra_args = {} if extra_args is None else extra_args
|
24 |
+
+ s_in = x.new_ones([x.shape[0]])
|
25 |
+
+ sigma_fn = lambda t: t.neg().exp()
|
26 |
+
+ t_fn = lambda sigma: sigma.log().neg()
|
27 |
+
+ old_denoised = None
|
28 |
+
+
|
29 |
+
+ for i in trange(len(sigmas) - 1, disable=disable):
|
30 |
+
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
|
31 |
+
+ if callback is not None:
|
32 |
+
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
33 |
+
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
34 |
+
+ h = t_next - t
|
35 |
+
+
|
36 |
+
+ t_min = min(sigma_fn(t_next), sigma_fn(t))
|
37 |
+
+ t_max = max(sigma_fn(t_next), sigma_fn(t))
|
38 |
+
+
|
39 |
+
+ if old_denoised is None or sigmas[i + 1] == 0:
|
40 |
+
+ x = (t_min / t_max) * x - (-h).expm1() * denoised
|
41 |
+
+ else:
|
42 |
+
+ h_last = t - t_fn(sigmas[i - 1])
|
43 |
+
+
|
44 |
+
+ h_min = min(h_last, h)
|
45 |
+
+ h_max = max(h_last, h)
|
46 |
+
+ r = h_max / h_min
|
47 |
+
+
|
48 |
+
+ h_d = (h_max + h_min) / 2
|
49 |
+
+ denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
|
50 |
+
+ x = (t_min / t_max) * x - (-h_d).expm1() * denoised_d
|
51 |
+
+
|
52 |
+
+ old_denoised = denoised
|
53 |
+
+ return x
|
54 |
+
|
55 |
+
--
|
56 |
+
2.40.0
|
57 |
+
|