File size: 3,239 Bytes
c44c836 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# Bertopic_Keybert_Champions
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("Noibu/Bertopic_Keybert_Champions")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 10
* Number of training documents: 11678
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | short - powerblend - mesh short - shorts - big tall | 78 | -1_short_powerblend_mesh short_shorts |
| 0 | ny - york - new york - st - st apt | 2099 | 0_ny_york_new york_st |
| 1 | available color - color - color black - grey - white | 5852 | 1_available color_color_color black_grey |
| 2 | search result - search - short search - item search - pant search | 2210 | 2_search result_search_short search_item search |
| 3 | address close - shipping address - address - shipping - michael | 463 | 3_address close_shipping address_address_shipping |
| 4 | size xl - size guide - xl xl - xl available - xl | 403 | 4_size xl_size guide_xl xl_xl available |
| 5 | code - code order - apply - new premium - premium | 190 | 5_code_code order_apply_new premium |
| 6 | password - new password - login - account - enter | 140 | 6_password_new password_login_account |
| 7 | shipping address - address address - address - address order - new address | 131 | 7_shipping address_address address_address_address order |
| 8 | billing - credit card - card number - card - credit | 112 | 8_billing_credit card_card number_card |
</details>
## Training hyperparameters
* calculate_probabilities: True
* language: None
* low_memory: False
* min_topic_size: 50
* n_gram_range: (1, 2)
* nr_topics: 10
* seed_topic_list: [['ship', 'address', 'location', 'destination', 'post', 'deliver', 'florida', 'texas', 'united states', 'europe', 'asia'], ['password', 'account', 'login', 'sign in', 'email', 'id', 'authentication', 'username'], ['select', 'choose', 'sort', 'next', 'more', 'back', 'scroll', 'previous', 'search', 'results', 'catalog', 'find', 'lookup', 'query', 'browse', 'explore', 'filter'], ['first', 'last', 'name', 'username', 'middlename', 'surname', 'given name', 'alias'], ['cart', 'basket', 'bag', 'add', 'remove', 'edit', 'cancel', 'update', 'delete', 'modify', 'change'], ['checkout', 'payment', 'pay', 'order', 'purchase', 'billing', 'transaction'], ['small', 'medium', 'large', 'extra large', 's', 'm', 'l', 'xl', 'xxl', 'slim fit', 'size', 'fit', 'quantity'], ['promo', 'code', 'apply', 'welcome', 'offer']]
* top_n_words: 10
* verbose: False
## Framework versions
* Numpy: 1.23.5
* HDBSCAN: 0.8.33
* UMAP: 0.5.3
* Pandas: 1.5.3
* Scikit-Learn: 1.2.2
* Sentence-transformers: 2.2.2
* Transformers: 4.31.0
* Numba: 0.56.4
* Plotly: 5.15.0
* Python: 3.10.12
|