--- license: cc-by-nc-sa-4.0 language: - 'no' --- # Model Card NorGPT-369M-summarization-peft is trained on top of [NorGPT-369M](https://huggingface.co/NorGLM/NorGPT-369M) model on [NO-CNN-DailyMail](https://huggingface.co/datasets/NorGLM/NO-CNN-DailyMail) dataset. Prompt format: ``` Summarise the article:\\n{article} |||\\n{positive_sample} ``` Inference prompt: ``` Summarise the article:\\n{article} |||\\n ``` ## Run the Model ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer import torch source_model_id = "NorGLM/NorGPT-369M" peft_model_id = "NorGLM/NorGPT-369M-summarization-peft" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(source_model_id, device_map='balanced') tokenizer_max_len = 2048 tokenizer_config = {'pretrained_model_name_or_path': source_model_id, 'max_len': tokenizer_max_len} tokenizer = tokenizer = AutoTokenizer.from_pretrained(**tokenizer_config) tokenizer.pad_token = tokenizer.eos_token model = PeftModel.from_pretrained(model, peft_model_id) ``` ## Inference on test set Load the model to evaluate on the test set of NO-CNN-DailyMail dataset: ```python def generate_texts(model, tokenizer, prompts, max_seq_length=200, do_sample=True, top_p=0.95, top_k=10): # prompts are a list of news articles results = [] cnt = 0 for prompt in prompts: cnt += 1 pro_len = len(prompt.split()) if pro_len>1024: results.append('') continue prompt = 'Summarise the article:\\n' + prompt + ' |||\\n' model_inputs = tokenizer(prompt, return_tensors='pt').to(torch_device) output = model.generate(**model_inputs, do_sample=False, max_new_tokens=max_seq_length) result = tokenizer.decode(output[0], skip_special_tokens=True) result = result.split("|||\\n")[-1] results.append(result) return results print("--LOADING EVAL DATAS---") eval_data = load_dataset("NorGLM/NO-CNN-DailyMail", data_files="test.csv") prompts = eval_data['train']['article'] positive_samples = eval_data['train']['positive_sample'] print("--MAKING PREDICTIONS---") model.eval() output_file = with torch.no_grad(): results = generate_texts(model, tokenizer, prompts) df = pd.DataFrame({'article':prompts, 'generated_text':results, 'positive_sample':positive_samples}) print("Save results to csv file...") df.to_csv(output_file) ``` ## Note More training details will be released soon!