a2c-AntBulletEnv-v0 / config.json
NorbertRop's picture
Initial commit
92c9217
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf57c2e830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf57c2e8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf57c2e950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf57c2e9e0>", "_build": "<function ActorCriticPolicy._build at 0x7fdf57c2ea70>", "forward": "<function ActorCriticPolicy.forward at 0x7fdf57c2eb00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdf57c2eb90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf57c2ec20>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdf57c2ecb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf57c2ed40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf57c2edd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf57c2ee60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdf57c26140>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684158294819552607, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABoEjj+sTeo/Z6y9v/gu3z9Q+/c/1j+wP+4zsL/HZLG/Q8d3Pz/vKUB/XDA/FlTHPu/5kb8C4fE9wU8IP12Y8r6xNlA/IAJIv9hebb9nNrA/GZFyP+tW1D/rR4C/PO7EPVi4Uz+Fc+G/rm6VPjaVo7/JU6A/EmZyPxii0Lx/FQtA66SFvpuyjr17f2W/ZBxxvkdvc7/HCBrAuq4zv86yQcCm7zO/Ek6ivypxXb49FZY/PbWwP59+Tj/Wace/ASjJvyOXq7/qesrA3b04QClo47s3xZq/FFgRP65ulT42laO/MZqDP5UvhT8gdf69cmWnP/lgG77dx0VAEbh8vcchl78iJ7q+/BNVwBAsPT89dgLApiJav9EyLr9xtMe+4Dh4P8GlJb+iqzu/MHEGP4bTib/aMWO/9yphwLCr2D94bEk+N8WavxRYET+ubpU+NpWjv82utD+Z9dM/GIOJv5Bx4D9f1O0+ALzIPwIe3r+qLy3AzFTrPkGmPcDNwtU/U4Fcv0GvkL8nkDY8afMdP+qvpD4gyPU9DV1HPp7ffj5b+S3A2W8gP/78C8AdwPy+nzuMPzfFmr8UWBE/rm6VPjaVo7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAARafC0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6++2PQAAAADJ7ea/AAAAABazrrwAAAAAeajwPwAAAADwnim9AAAAAIlKAEAAAAAARQUPvgAAAAAzeeC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiANLNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIVYDL4AAAAA7Kn1vwAAAADQOz69AAAAAF2g6D8AAAAAGueWvQAAAAA4Zfc/AAAAAEEc6r0AAAAAIkkAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANWBMDcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICYRai9AAAAAOKq7b8AAAAASlcCPgAAAACVmfE/AAAAAIhKEj4AAAAAwMHvPwAAAAAz+NW9AAAAADux3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIzLY0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcM85PQAAAAD9M/y/AAAAAA/FJbsAAAAAmrz4PwAAAABVlyC8AAAAAPDx5D8AAAAAZhOUvQAAAADTZvC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJsrDxsl9jSMAWyUTegDjAF0lEdArJcACGN70HV9lChoBkdAmwqAVwgkkmgHTegDaAhHQKyZRFLFn7J1fZQoaAZHQJz3zFXJYDFoB03oA2gIR0Csmcr0J4SpdX2UKGgGR0CbdB4aP0ZnaAdN6ANoCEdArJxp5qubJHV9lChoBkdAmP/RX4j8k2gHTegDaAhHQKyjelN1yNp1fZQoaAZHQJtHgLmZE2JoB03oA2gIR0Cspjo2GZeBdX2UKGgGR0CZPKJm/WUbaAdN6ANoCEdArKb1uzhP03V9lChoBkdAmV+eXRgJC2gHTegDaAhHQKyq4pkPMB91fZQoaAZHQJf1uiFj/dZoB03oA2gIR0Css66wD/2kdX2UKGgGR0CYKVhJiAlOaAdN6ANoCEdArLYFOfukUXV9lChoBkdAmT4GXsw+MmgHTegDaAhHQKy2iaa1Cw91fZQoaAZHQJi8u6shgVpoB03oA2gIR0CsuTOqvNeMdX2UKGgGR0CXQklWfbsXaAdN6ANoCEdArMAWN3np0XV9lChoBkdAl1JhqO938mgHTegDaAhHQKzCXHz6JqJ1fZQoaAZHQJTs4/6frbBoB03oA2gIR0Cswt7XxvvSdX2UKGgGR0CX6ngSvkimaAdN6ANoCEdArMYOM+/xlXV9lChoBkdAmku5ul41P2gHTegDaAhHQKzQA8YAKfF1fZQoaAZHQJfw6qrBCUpoB03oA2gIR0Cs0lQ1aW5ZdX2UKGgGR0CXnzqxkd3jaAdN6ANoCEdArNLZCY1HfHV9lChoBkdAmG8BGc4HX2gHTegDaAhHQKzVhNoJzDJ1fZQoaAZHQJZuyrvLHMloB03oA2gIR0Cs3IGTs6aLdX2UKGgGR0CYG/6Q/5ckaAdN6ANoCEdArN7f1anrIHV9lChoBkdAmhj0SElE7WgHTegDaAhHQKzfYmLLpzN1fZQoaAZHQJhvFCu2ZzBoB03oA2gIR0Cs4hmu9vjwdX2UKGgGR0CY5PCiRGMGaAdN6ANoCEdArOxAGfPHDXV9lChoBkdAk7IbL2YfGWgHTegDaAhHQKzvJ6wdKdx1fZQoaAZHQJUr/7l7tzFoB03oA2gIR0Cs76dNWU8ndX2UKGgGR0CaHj4QSSNgaAdN6ANoCEdArPJfYL9deXV9lChoBkdAk0QoJE6T4mgHTegDaAhHQKz5ZBOYYzl1fZQoaAZHQJhEgEjgQ6JoB03oA2gIR0Cs+8WV/tpmdX2UKGgGR0CXD6rXlKbsaAdN6ANoCEdArPxNKh+OO3V9lChoBkdAkpxKIeo1k2gHTegDaAhHQKz++WDYh+x1fZQoaAZHQJK4vWy1NQFoB03oA2gIR0CtB90CJXQudX2UKGgGR0CQZJvvBrN4aAdN6ANoCEdArQtwK4QSSXV9lChoBkdAl8C6BI4EOmgHTegDaAhHQK0MPZqVQhx1fZQoaAZHQJWEZ8kUsWhoB03oA2gIR0CtDz8FINExdX2UKGgGR0CTwUQtjCpFaAdN6ANoCEdArRY4Ym9g4XV9lChoBkdAkr5T+irT6WgHTegDaAhHQK0YhYfW+XZ1fZQoaAZHQJKGAbedkJ9oB03oA2gIR0CtGQkYO2AodX2UKGgGR0CR2VOdoWYXaAdN6ANoCEdArRvGMfigkHV9lChoBkdAlH/M8PnSv2gHTegDaAhHQK0jjO0LMLZ1fZQoaAZHQJVCdfoicG1oB03oA2gIR0CtJtJPhybQdX2UKGgGR0CYmEpMpPRBaAdN6ANoCEdArSeddPci4nV9lChoBkdAlZ0yZOSGJ2gHTegDaAhHQK0rttjTa0x1fZQoaAZHQJQxq1XvH95oB03oA2gIR0CtMr61stTUdX2UKGgGR0CUBSITGo73aAdN6ANoCEdArTUPqTr3TXV9lChoBkdAmkeO7UXpGGgHTegDaAhHQK01kqI7/4t1fZQoaAZHQJh7ujrRjSZoB03oA2gIR0CtODr9l2/0dX2UKGgGR0CWISLHuJDWaAdN6ANoCEdArT8UUXYUWXV9lChoBkdAm+HJEYwZfmgHTegDaAhHQK1B4/A0sOJ1fZQoaAZHQJcu6wX668RoB03oA2gIR0CtQpqwhW5pdX2UKGgGR0CYCggTyrggaAdN6ANoCEdArUaJTAFgUnV9lChoBkdAmlf7xAjY7WgHTegDaAhHQK1O4+rU9ZB1fZQoaAZHQJqfnQBxPwdoB03oA2gIR0CtUShNdqtYdX2UKGgGR0CWd2uOCGvfaAdN6ANoCEdArVGkzAN5MXV9lChoBkdAnA5876pHZ2gHTegDaAhHQK1UTjxTbWV1fZQoaAZHQJlNeX/o7mxoB03oA2gIR0CtWzaLGaQWdX2UKGgGR0CXRwFCLMs6aAdN6ANoCEdArV2X8yeqaXV9lChoBkdAmbEZftx+8WgHTegDaAhHQK1eGlw97nh1fZQoaAZHQJvcyKNyYHBoB03oA2gIR0CtYapYcNpedX2UKGgGR0CZqvSF49owaAdN6ANoCEdArWta0KJEY3V9lChoBkdAk4lZm/WUbGgHTegDaAhHQK1tpm9QGfR1fZQoaAZHQJggknPVurJoB03oA2gIR0CtbihUrCm/dX2UKGgGR0CVSM2xptaZaAdN6ANoCEdArXDJLRKHwnV9lChoBkdAlI5nfqHGj2gHTegDaAhHQK13oE5hjON1fZQoaAZHQJdIVkjHGS9oB03oA2gIR0CteeOLBKtgdX2UKGgGR0CXmjHlwLmZaAdN6ANoCEdArXpjQ9ic5XV9lChoBkdAlyzeNDMNdGgHTegDaAhHQK19CEkjX4F1fZQoaAZHQJTiMlKK509oB03oA2gIR0Cth0KubI91dX2UKGgGR0CRX0JrLyMDaAdN6ANoCEdArYoBvvSc9XV9lChoBkdAmVBLJCBwuWgHTegDaAhHQK2KgWhRIjJ1fZQoaAZHQJhA65TZQHloB03oA2gIR0CtjS5v99+gdX2UKGgGR0Ca4lZVGTcJaAdN6ANoCEdArZQ1d/rjYXV9lChoBkdAjNGEug6EJ2gHTegDaAhHQK2WlDIBBAx1fZQoaAZHQJQBA/FBIFxoB03oA2gIR0CtlxfjCHh1dX2UKGgGR0CQHgCv5gw5aAdN6ANoCEdArZnX8ZUDMnV9lChoBkdAkHvWPHT7VWgHTegDaAhHQK2iqaLn9vV1fZQoaAZHQJWIlIczZYhoB03oA2gIR0CtpjRtHhCMdX2UKGgGR0CS/rMDOkckaAdN6ANoCEdArab6xzJZGXV9lChoBkdAlGIGx6fJ3mgHTegDaAhHQK2p6oCMglp1fZQoaAZHQJEPAir1dxBoB03oA2gIR0CtsO0th/iHdX2UKGgGR0COcD9nbqQjaAdN6ANoCEdArbMz1/Ue+3V9lChoBkdAj+aRhUipvWgHTegDaAhHQK2zsifQKKJ1fZQoaAZHQI4R3I2fkFRoB03oA2gIR0CttlK7qY7adX2UKGgGR0CRyKq33HrAaAdN6ANoCEdArb36kO7QLXV9lChoBkdAlYawbZOBUmgHTegDaAhHQK3BXTkQwsZ1fZQoaAZHQJRJsKG+K0loB03oA2gIR0CtwiatLcsUdX2UKGgGR0CR4A7qIJqqaAdN6ANoCEdArcZpHf/FSHV9lChoBkdAkUAsunMt9WgHTegDaAhHQK3NZlcyFf11fZQoaAZHQJEAv7BO58VoB03oA2gIR0Ctz6xEWqLkdX2UKGgGR0COw1R2KVIJaAdN6ANoCEdArdAxKraM73V9lChoBkdAlBGSW7e2u2gHTegDaAhHQK3S5uYQarF1fZQoaAZHQJTZET37DVJoB03oA2gIR0Ct2cr0Bfa6dX2UKGgGR0CRsimCiAUdaAdN6ANoCEdArdzAhUzbe3V9lChoBkdAkzgs5OrQxGgHTegDaAhHQK3dcs5GSZB1fZQoaAZHQJIgpdLQHA1oB03oA2gIR0Ct4VbFCLMtdX2UKGgGR0B/Ik4gieNDaAdN6ANoCEdArem3/T9bYHV9lChoBkdAkzJL433pOmgHTegDaAhHQK3sCA6Mir11fZQoaAZHQJOA1c3VColoB03oA2gIR0Ct7IxDkU9IdX2UKGgGR0CQzLWCmMwUaAdN6ANoCEdAre9McQyylnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}