Update README.md
Browse files
README.md
CHANGED
@@ -9,6 +9,7 @@ license: afl-3.0
|
|
9 |
|
10 |
**A Quick Example**
|
11 |
```python
|
|
|
12 |
from networks.modeling_erine_layout import ErnieLayoutConfig, ErnieLayoutForQuestionAnswering
|
13 |
from networks.feature_extractor import ErnieFeatureExtractor
|
14 |
from networks.tokenizer import ErnieLayoutTokenizer
|
@@ -16,30 +17,33 @@ from networks.model_util import ernie_qa_tokenize, prepare_context_info
|
|
16 |
from PIL import Image
|
17 |
|
18 |
|
19 |
-
pretrain_torch_model_or_path = "path/to/pretrained
|
|
|
|
|
|
|
20 |
|
21 |
# initialize tokenizer
|
22 |
tokenizer = ErnieLayoutTokenizer.from_pretrained(pretrained_model_name_or_path=pretrain_torch_model_or_path)
|
23 |
context = ['This is an example document', 'All ocr boxes are inserted into this list']
|
24 |
-
layout = [[381, 91, 505, 115], [738, 96, 804, 122]]
|
25 |
|
26 |
-
#
|
27 |
feature_extractor = ErnieFeatureExtractor()
|
28 |
|
29 |
# Tokenize context & questions
|
30 |
-
context_encodings
|
31 |
question = "what is it?"
|
32 |
tokenized_res = ernie_qa_tokenize(tokenizer, question, context_encodings)
|
|
|
|
|
33 |
|
34 |
# answer start && end index
|
35 |
-
tokenized_res['start_positions'] = 6
|
36 |
-
tokenized_res['end_positions'] = 12
|
37 |
|
38 |
-
# open the image of the document
|
39 |
-
pil_image = Image.open("/path/to/image").convert("RGB")
|
40 |
|
41 |
-
#
|
42 |
-
tokenized_res['pixel_values'] = feature_extractor(
|
43 |
|
44 |
|
45 |
# initialize config
|
@@ -51,7 +55,9 @@ model = ErnieLayoutForQuestionAnswering.from_pretrained(
|
|
51 |
pretrained_model_name_or_path=pretrain_torch_model_or_path,
|
52 |
config=config,
|
53 |
)
|
|
|
54 |
|
55 |
output = model(**tokenized_res)
|
56 |
|
|
|
57 |
```
|
|
|
9 |
|
10 |
**A Quick Example**
|
11 |
```python
|
12 |
+
import torch
|
13 |
from networks.modeling_erine_layout import ErnieLayoutConfig, ErnieLayoutForQuestionAnswering
|
14 |
from networks.feature_extractor import ErnieFeatureExtractor
|
15 |
from networks.tokenizer import ErnieLayoutTokenizer
|
|
|
17 |
from PIL import Image
|
18 |
|
19 |
|
20 |
+
pretrain_torch_model_or_path = "path/to/pretrained/mode"
|
21 |
+
doc_imag_path = "path/to/doc/image"
|
22 |
+
|
23 |
+
device = torch.device("cuda:0")
|
24 |
|
25 |
# initialize tokenizer
|
26 |
tokenizer = ErnieLayoutTokenizer.from_pretrained(pretrained_model_name_or_path=pretrain_torch_model_or_path)
|
27 |
context = ['This is an example document', 'All ocr boxes are inserted into this list']
|
28 |
+
layout = [[381, 91, 505, 115], [738, 96, 804, 122]] # all boxes are resized between 0 - 1000
|
29 |
|
30 |
+
# initialize feature extractor
|
31 |
feature_extractor = ErnieFeatureExtractor()
|
32 |
|
33 |
# Tokenize context & questions
|
34 |
+
context_encodings = prepare_context_info(tokenizer, context, layout, add_special_tokens=False)
|
35 |
question = "what is it?"
|
36 |
tokenized_res = ernie_qa_tokenize(tokenizer, question, context_encodings)
|
37 |
+
tokenized_res['input_ids'] = torch.tensor([tokenized_res['input_ids']]).to(device)
|
38 |
+
tokenized_res['bbox'] = torch.tensor([tokenized_res['bbox']]).to(device)
|
39 |
|
40 |
# answer start && end index
|
41 |
+
tokenized_res['start_positions'] = torch.tensor([6]).to(device)
|
42 |
+
tokenized_res['end_positions'] = torch.tensor([12]).to(device)
|
43 |
|
|
|
|
|
44 |
|
45 |
+
# open the image of the document and process image
|
46 |
+
tokenized_res['pixel_values'] = feature_extractor(Image.open(doc_imag_path).convert("RGB")).unsqueeze(0).to(device)
|
47 |
|
48 |
|
49 |
# initialize config
|
|
|
55 |
pretrained_model_name_or_path=pretrain_torch_model_or_path,
|
56 |
config=config,
|
57 |
)
|
58 |
+
model.to(device)
|
59 |
|
60 |
output = model(**tokenized_res)
|
61 |
|
62 |
+
|
63 |
```
|