|
from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler |
|
import torch |
|
|
|
|
|
lms = LMSDiscreteScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear" |
|
) |
|
|
|
guidance_scale=8.5 |
|
seed=777 |
|
steps=50 |
|
|
|
cartoon_model_path = "Norod78/sd2-simpsons-blip" |
|
cartoon_pipe = StableDiffusionPipeline.from_pretrained(cartoon_model_path, scheduler=lms, torch_dtype=torch.float16) |
|
cartoon_pipe.to("cuda") |
|
|
|
def generate(prompt, file_prefix ,samples): |
|
torch.manual_seed(seed) |
|
prompt += ", Very detailed, clean, high quality, sharp image" |
|
cartoon_images = cartoon_pipe([prompt] * samples, num_inference_steps=steps, guidance_scale=guidance_scale)["images"] |
|
for idx, image in enumerate(cartoon_images): |
|
image.save(f"{file_prefix}-{idx}-{seed}-sd2-simpsons-blip.jpg") |
|
|
|
generate("An oil painting of Snoop Dogg as a simpsons character", "01_SnoopDog", 4) |
|
generate("Gal Gadot, cartoon", "02_GalGadot", 4) |
|
generate("A cartoony Simpsons town", "03_SimpsonsTown", 4) |
|
generate("Pikachu with the Simpsons, Eric Wallis", "04_PikachuSimpsons", 4) |
|
|
|
|
|
|
|
|
|
|