from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler import torch # this will substitute the default PNDM scheduler for K-LMS lms = LMSDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" ) guidance_scale=8.5 seed=777 steps=50 cartoon_model_path = "Norod78/sd2-simpsons-blip" cartoon_pipe = StableDiffusionPipeline.from_pretrained(cartoon_model_path, scheduler=lms, torch_dtype=torch.float16) cartoon_pipe.to("cuda") def generate(prompt, file_prefix ,samples): torch.manual_seed(seed) prompt += ", Very detailed, clean, high quality, sharp image" cartoon_images = cartoon_pipe([prompt] * samples, num_inference_steps=steps, guidance_scale=guidance_scale)["images"] for idx, image in enumerate(cartoon_images): image.save(f"{file_prefix}-{idx}-{seed}-sd2-simpsons-blip.jpg") generate("An oil painting of Snoop Dogg as a simpsons character", "01_SnoopDog", 4) generate("Gal Gadot, cartoon", "02_GalGadot", 4) generate("A cartoony Simpsons town", "03_SimpsonsTown", 4) generate("Pikachu with the Simpsons, Eric Wallis", "04_PikachuSimpsons", 4)