File size: 16,158 Bytes
d1eaacf
 
 
 
 
 
 
 
 
 
 
 
 
 
8722c0b
d1eaacf
 
 
 
 
 
 
 
 
 
 
cab8e13
 
 
d1eaacf
cab8e13
 
 
058626b
d1eaacf
 
 
 
 
 
 
 
 
 
 
 
 
 
6461ae4
d1eaacf
 
 
 
 
 
 
ef71606
 
 
 
 
 
 
 
d1eaacf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f61d48c
 
 
d1eaacf
f61d48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1eaacf
 
f61d48c
 
 
 
 
 
 
 
 
 
 
d1eaacf
 
 
f61d48c
d1eaacf
 
f61d48c
d1eaacf
 
 
f61d48c
 
 
 
 
 
 
d1eaacf
f61d48c
 
 
 
 
 
 
 
d1eaacf
 
f61d48c
 
d1eaacf
f61d48c
d1eaacf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c94b9e
d1eaacf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cab8e13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
---
base_model: NousResearch/Meta-Llama-3-8B
tags:
- Llama-3
- instruct
- finetune
- chatml
- DPO
- RLHF
- gpt4
- synthetic data
- distillation
- function calling
- json mode
- axolotl
model-index:
- name: Hermes-2-Pro-Llama-3-8B
  results: []
language:
- en
datasets:
- teknium/OpenHermes-2.5
widget:
- example_title: Hermes 2 Pro
  messages:
  - role: system
    content: >-
      You are a sentient, superintelligent artificial general intelligence, here
      to teach and assist me.
  - role: user
    content: >-
      Write a short story about Goku discovering kirby has teamed up with Majin
      Buu to destroy the world.
license: llama3
---

# Hermes 2 Pro - Llama-3 8B

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ggO2sBDJ8Bhc6w-zwTx5j.png)

## Model Description

Hermes 2 Pro is an upgraded, retrained version of Nous Hermes 2, consisting of an updated and cleaned version of the OpenHermes 2.5 Dataset, as well as a newly introduced Function Calling and JSON Mode dataset developed in-house.

This new version of Hermes maintains its excellent general task and conversation capabilities - but also excels at Function Calling, JSON Structured Outputs, and has improved on several other metrics as well, scoring a 90% on our function calling evaluation built in partnership with Fireworks.AI, and an 84% on our structured JSON Output evaluation.

Hermes Pro takes advantage of a special system prompt and multi-turn function calling structure with a new chatml role in order to make function calling reliable and easy to parse. Learn more about prompting below.

This version of Hermes 2 Pro adds several tokens to assist with agentic capabilities in parsing while streaming tokens - `<tools>`, `<tool_call>`, `<tool_response>` and their closing tags are single tokens now.

This work was a collaboration between Nous Research, @interstellarninja, and Fireworks.AI

Learn more about the function calling system for this model on our github repo here: https://github.com/NousResearch/Hermes-Function-Calling

## Example Outputs

### Ask for a structured JSON output:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ll2j2wkQffCsiSwUjfRUq.png)

### Write the plot for a story where anime became real life:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/h_7aXGXdm2p2ONYuDF4Ii.png)

### Coding Assistance
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/bBd0hyAb8w5rKUiN2w1I6.png)

# Prompt Format

Hermes 2 Pro uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue.

System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.

This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns.

This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI.

Prompt with system instruction (Use whatever system prompt you like, this is just an example!):
```
<|im_start|>system
You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|>
<|im_start|>user
Hello, who are you?<|im_end|>
<|im_start|>assistant
Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|>
```

This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
`tokenizer.apply_chat_template()` method:

```python
messages = [
    {"role": "system", "content": "You are Hermes 2."},
    {"role": "user", "content": "Hello, who are you?"}
]
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
model.generate(**gen_input)
```

When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure
that the model continues with an assistant response.

To utilize the prompt format without a system prompt, simply leave the line out.

## Prompt Format for Function Calling

Our model was trained on specific system prompts and structures for Function Calling. These are handled by the `tool_use` chat template. To use this template,
first define a list of tool functions. It's okay if these are dummy functions - what matters is their name, type hints, and docstring, as these will be
extracted and made available to the model:

```python
def get_current_temperature(location: str, unit: str) -> float:
    """
    Get the current temperature at a location.
    
    Args:
        location: The location to get the temperature for, in the format "City, Country"
        unit: The unit to return the temperature in. (choices: ["celsius", "fahrenheit"])
    Returns:
        The current temperature at the specified location in the specified units, as a float.
    """
    return 22.  # A real function should probably actually get the temperature!

def get_current_wind_speed(location: str) -> float:
    """
    Get the current wind speed in km/h at a given location.
    
    Args:
        location: The location to get the temperature for, in the format "City, Country"
    Returns:
        The current wind speed at the given location in km/h, as a float.
    """
    return 6.  # A real function should probably actually get the wind speed!

tools = [get_current_temperature, get_current_wind_speed]
```

Now, prepare a chat and apply the chat template, then generate the model's response

```python
messages = [
  {"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
]

inputs = tokenizer.apply_chat_template(messages, chat_template="tool_use", tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
out = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(out[0][len(inputs["input_ids"][0]):]))
```

The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling):

```
<tool_call>
{"arguments": {"location": "Paris, France", "unit": "celsius"}, "name": "get_current_temperature"}
</tool_call><|im_end|>
```

Once you parse the tool call, add it to the chat as an `assistant` response, using the `tool_calls` key, then append the tool output
as a response with the `tool` role:

```python
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France", "unit": "celsius"}}
messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
```

Now you can apply the chat template again to format the conversation, and generate a response from the model:

```python
inputs = tokenizer.apply_chat_template(messages, chat_template="tool_use", tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
out = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(out[0][len(inputs["input_ids"][0]):]))
```

and we get:

```
The current temperature in Paris, France is 22.0 degrees Celsius.<|im_end|>
```

## Prompt Format for JSON Mode / Structured Outputs

Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema.

Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main

```
<|im_start|>system
You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|im_end|>
```

Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON.


# Benchmarks

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/vOYv9wJUMn1Xrf4BvmO_x.png)

## GPT4All:
```
|    Task     |Version| Metric |Value |   |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge|      0|acc     |0.5520|±  |0.0145|
|             |       |acc_norm|0.5887|±  |0.0144|
|arc_easy     |      0|acc     |0.8350|±  |0.0076|
|             |       |acc_norm|0.8123|±  |0.0080|
|boolq        |      1|acc     |0.8584|±  |0.0061|
|hellaswag    |      0|acc     |0.6265|±  |0.0048|
|             |       |acc_norm|0.8053|±  |0.0040|
|openbookqa   |      0|acc     |0.3800|±  |0.0217|
|             |       |acc_norm|0.4580|±  |0.0223|
|piqa         |      0|acc     |0.8003|±  |0.0093|
|             |       |acc_norm|0.8118|±  |0.0091|
|winogrande   |      0|acc     |0.7490|±  |0.0122|
```
Average: 72.62

## AGIEval:
```
|             Task             |Version| Metric |Value |   |Stderr|
|------------------------------|------:|--------|-----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |0.2520|±  |0.0273|
|                              |       |acc_norm|0.2559|±  |0.0274|
|agieval_logiqa_en             |      0|acc     |0.3548|±  |0.0188|
|                              |       |acc_norm|0.3625|±  |0.0189|
|agieval_lsat_ar               |      0|acc     |0.1826|±  |0.0255|
|                              |       |acc_norm|0.1913|±  |0.0260|
|agieval_lsat_lr               |      0|acc     |0.5510|±  |0.0220|
|                              |       |acc_norm|0.5255|±  |0.0221|
|agieval_lsat_rc               |      0|acc     |0.6431|±  |0.0293|
|                              |       |acc_norm|0.6097|±  |0.0298|
|agieval_sat_en                |      0|acc     |0.7330|±  |0.0309|
|                              |       |acc_norm|0.7039|±  |0.0319|
|agieval_sat_en_without_passage|      0|acc     |0.4029|±  |0.0343|
|                              |       |acc_norm|0.3689|±  |0.0337|
|agieval_sat_math              |      0|acc     |0.3909|±  |0.0330|
|                              |       |acc_norm|0.3773|±  |0.0328|
```
Average: 42.44

## BigBench:
```
|                      Task                      |Version|       Metric        |Value |   |Stderr|
|------------------------------------------------|------:|---------------------|-----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|0.5737|±  |0.0360|
|bigbench_date_understanding                     |      0|multiple_choice_grade|0.6667|±  |0.0246|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|0.3178|±  |0.0290|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|0.1755|±  |0.0201|
|                                                |       |exact_str_match      |0.0000|±  |0.0000|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|0.3120|±  |0.0207|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|0.2014|±  |0.0152|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|0.5500|±  |0.0288|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|0.4300|±  |0.0222|
|bigbench_navigate                               |      0|multiple_choice_grade|0.4980|±  |0.0158|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|0.7010|±  |0.0102|
|bigbench_ruin_names                             |      0|multiple_choice_grade|0.4688|±  |0.0236|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|0.1974|±  |0.0126|
|bigbench_snarks                                 |      0|multiple_choice_grade|0.7403|±  |0.0327|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|0.5426|±  |0.0159|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|0.5320|±  |0.0158|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|0.2280|±  |0.0119|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|0.1531|±  |0.0086|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|0.5500|±  |0.0288|
```
Average: 43.55

## TruthfulQA:
```
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |0.410|±  |0.0172|
|             |       |mc2   |0.578|±  |0.0157|
```


# Inference Code

Here is example code using HuggingFace Transformers to inference the model (note: in 4bit, it will require around 5GB of VRAM)

Note: To use function calling, you should see the github repo above.

```python
# Code to inference Hermes with HF Transformers
# Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM
import bitsandbytes, flash_attn

tokenizer = AutoTokenizer.from_pretrained('NousResearch/Hermes-2-Pro-Llama-3-8B', trust_remote_code=True)
model = LlamaForCausalLM.from_pretrained(
    "NousResearch/Hermes-2-Pro-Llama-3-8B",
    torch_dtype=torch.float16,
    device_map="auto",
    load_in_8bit=False,
    load_in_4bit=True,
    use_flash_attention_2=True
)

prompts = [
    """<|im_start|>system
You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|>
<|im_start|>user
Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|>
<|im_start|>assistant""",
    ]

for chat in prompts:
    print(chat)
    input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
    generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
    response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
    print(f"Response: {response}")
```


## Inference Code for Function Calling:

All code for utilizing, parsing, and building function calling templates is available on our github:
[https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/oi4CiGh50xmoviUQnh8R3.png)

# Chat Interfaces

When quantized versions of the model are released, I recommend using LM Studio for chatting with Hermes 2 Pro. It does not support function calling - for that use our github repo. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box.
In LM-Studio, simply select the ChatML Prefix on the settings side pane:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png)


## Quantized Versions:

GGUF Versions Available Here: https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B-GGUF

# How to cite:

```bibtext
@misc{Hermes-2-Pro-Llama-3-8B, 
      url={[https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B]https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B)}, 
      title={Hermes-2-Pro-Llama-3-8B}, 
      author={"Teknium", "interstellarninja", "theemozilla", "karan4d", "huemin_art"}
}
```