File size: 2,791 Bytes
058f70d
7a32945
 
 
331263a
 
 
 
 
 
 
 
7a32945
331263a
 
 
058f70d
331263a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
language:
- en
license: apache-2.0
tags:
- mistral
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: Thestral-0.1-tr-chat-7B
  results: []
---

# Thestral-0.1-tr-chat-7B


![image/png](https://cdn-uploads.huggingface.co/production/uploads/60ca32d2e7bc4b029af088a0/pNId3MzUdSsI20XOM9Dsv.png)

This model is a full fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on diverse Turkish datasets. 

The model is fully finetuned on translated datasets using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). These datasets primarily consist of translated versions sourced from [teknium/OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) and the [Open-Orca/SlimOrca datasets](https://huggingface.co/datasets/Open-Orca/SlimOrca).

<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: NovusResearch/OpenHermes-2.5-Translated-TR-sharegpt-style
    type: sharegpt
    conversation: chatml
  - path: data/merged_all.json
    ds_type: json
    type: sharegpt
    conversation: chatml

dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

## Use 
wandb_project: full_finetune
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:


warmup_steps: 10
evals_per_epoch: 0
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "<|im_end|>"
  unk_token: "<unk>"
tokens:
  - "<|im_start|>"

```
</details><br>

# 🎯 [OpenLLMTurkishLeaderboard](https://huggingface.co/spaces/malhajar/OpenLLMTurkishLeaderboard)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |36.41|
|AI2 Reasoning Challenge          |27.24|
|HellaSwag                        |33.93|
|MMLU                             |40.64|
|TruthfulQA                       |47.90|
|Winogrande                       |50.86|
|GSM8k                            |17.91|