File size: 22,026 Bytes
8c31d70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional, Tuple
import numpy as np
import torch
from einops import rearrange, repeat
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
def _rotate_half_te(x: torch.Tensor) -> torch.Tensor:
"""
change sign so the last dimension becomes [-odd, +even].
Adopted from TransformerEngine.
Source: https://github.com/NVIDIA/TransformerEngine/blob/main/transformer_engine/pytorch/attention.py
"""
x = x.view(x.shape[:-1] + torch.Size((2, x.shape[-1] // 2)))
x1, x2 = x.unbind(dim=-2)
return torch.cat((-x2, x1), dim=-1)
def _apply_rotary_pos_emb_te(
t: torch.Tensor,
cos_freqs: torch.Tensor,
sin_freqs: torch.Tensor,
) -> torch.Tensor:
"""
Apply rotary positional embedding tensor to the input tensor.
Adopted from TransformerEngine.
Source: https://github.com/NVIDIA/TransformerEngine/blob/main/transformer_engine/pytorch/attention.py
Parameters
----------
t: torch.Tensor
Input tensor of shape `[b, s, h, d]`, on which
rotary positional embedding will be applied.
cos_freqs: torch.Tensor
Cosine component of rotary positional embedding tensor of shape `[s, 1, 1, d]` and dtype 'float',
sin_freqs: torch.Tensor
Sine component of rotary positional embedding tensor of shape `[s, 1, 1, d]` and dtype 'float',
"""
rot_dim = cos_freqs.shape[-1]
# ideally t_pass is empty so rotary pos embedding is applied to all tensor t
t, t_pass = t[..., :rot_dim], t[..., rot_dim:]
# first part is cosine component
# second part is sine component, need to change signs with _rotate_half method
t = (t * cos_freqs) + (_rotate_half_te(t) * sin_freqs)
output = torch.cat((t, t_pass), dim=-1)
return output
class RotaryPositionEmbedding(torch.nn.Module):
"""
Rotary Position Embedding module as described in the paper:
https://arxiv.org/abs/2104.09864
This module implements rotary positional embeddings, which are used to
enhance the performance of transformer models.
Args:
dim (int): Dimensionality of the input tensor.
max_position_embeddings (Optional[int]): Maximum position embeddings.
original_max_position_embeddings (Optional[int]): Original maximum position embeddings.
rope_theta (Optional[float]): Base for the frequency calculation.
apply_yarn (Optional[bool]): Whether to apply YaRN (Yet another Rotary).
scale (Optional[int]): Scaling factor for the frequency calculation.
extrapolation_factor (Optional[int]): Extrapolation factor for the frequency extension.
attn_factor (Optional[int]): Attention factor for the frequency calculation.
beta_fast (Optional[int]): Fast beta value for the YaRN frequency calculation.
beta_slow (Optional[int]): Slow beta value for the YaRN frequency calculation.
rope_dim (Optional[str]): Dimensionality of the RoPE. Choices: "1D", "2D", "3D".
latent_shape (Optional[List[int]]): Shape of the latent tensor for video or image inputs.
original_latent_shape (Optional[List[int]]): Original shape of the latent tensor for video or image inputs.
pad_to_multiple_of (Optional[int]): Pad the position embedding to a multiple of this value.
"""
def __init__(
self,
dim: int,
max_position_embeddings: Optional[int] = None,
original_max_position_embeddings: Optional[int] = None,
rope_theta: Optional[float] = 10000.0,
apply_yarn: Optional[bool] = False,
scale: Optional[int] = None,
extrapolation_factor: Optional[int] = 1,
attn_factor: Optional[int] = 1,
beta_fast: Optional[int] = 32,
beta_slow: Optional[int] = 1,
rope_dim: Optional[str] = "1D",
latent_shape: Optional[List[int]] = None,
original_latent_shape: Optional[List[int]] = None,
pad_to_multiple_of: Optional[int] = None,
):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.original_max_position_embeddings = original_max_position_embeddings
self.rope_theta = rope_theta
self.apply_yarn = apply_yarn
self.scale = scale
self.extrapolation_factor = extrapolation_factor
self.attn_factor = attn_factor
self.beta_fast = beta_fast
self.beta_slow = beta_slow
self.mscale = 1.0
self.rope_dim = rope_dim
self.latent_shape = latent_shape
self.original_latent_shape = original_latent_shape
self.pad_to_multiple_of = pad_to_multiple_of
self.get_inv_freq(torch.cuda.current_device())
def get_mscale(self, scale: float = 1.0) -> float:
"""Get the magnitude scaling factor for YaRN."""
if scale <= 1:
return 1.0
return 0.1 * math.log(scale) + 1.0
def forward(self, seq_len: Optional[int] = None) -> torch.Tensor:
"""
Forward pass for the rotary position embedding.
Args:
seq_len (Optional[int]): Length of the sequence.
Returns:
torch.Tensor: The computed frequencies for positional embedding.
"""
if self.apply_yarn and seq_len > self.max_seq_len_cached:
self.max_seq_len_cached = seq_len
self.freqs = self.compute_freqs()
return self.freqs
def compute_freqs(
self,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute the spatial frequencies for the latent tensor."""
self.seq = torch.arange(self.max_seq_len_cached, dtype=torch.float).cuda()
if self.rope_dim == "1D":
emb = torch.einsum("i,j->ij", self.seq, self.inv_freq)
elif self.rope_dim == "2D":
H, W = self.latent_shape
half_emb_h = torch.outer(self.seq[:H], self.spatial_inv_freq)
half_emb_w = torch.outer(self.seq[:W], self.spatial_inv_freq)
emb = torch.cat(
[
repeat(half_emb_h, "h d -> h w d", w=W),
repeat(half_emb_w, "w d -> h w d", h=H),
]
* 2,
dim=-1,
)
emb = rearrange(emb, "h w d -> (h w) 1 1 d").float()
elif self.rope_dim == "3D":
T, H, W = self.latent_shape
half_emb_t = torch.outer(self.seq[:T], self.temporal_inv_freq)
half_emb_h = torch.outer(self.seq[:H], self.spatial_inv_freq)
half_emb_w = torch.outer(self.seq[:W], self.spatial_inv_freq)
emb = torch.cat(
[
repeat(half_emb_t, "t d -> t h w d", h=H, w=W),
repeat(half_emb_h, "h d -> t h w d", t=T, w=W),
repeat(half_emb_w, "w d -> t h w d", t=T, h=H),
]
* 2,
dim=-1,
)
emb = rearrange(emb, "t h w d -> (t h w) 1 1 d").float()
else:
raise ValueError(f"Invalid RoPE dimensionality: {self.rope_dim}")
return emb
def get_scale_factors(self, inv_freq: torch.Tensor, original_seq_len: int) -> torch.Tensor:
"""Get the scale factors for YaRN."""
# Calculate the high and low frequency cutoffs for YaRN. Note: `beta_fast` and `beta_slow` are called
# `high_freq_factor` and `low_freq_factor` in the Llama 3.1 RoPE scaling code.
high_freq_cutoff = 2 * math.pi * self.beta_fast / original_seq_len
low_freq_cutoff = 2 * math.pi * self.beta_slow / original_seq_len
# Obtain a smooth mask that has a value of 0 for low frequencies and 1 for high frequencies, with linear
# interpolation in between.
smooth_mask = torch.clamp((inv_freq - low_freq_cutoff) / (high_freq_cutoff - low_freq_cutoff), min=0, max=1)
# For low frequencies, we scale the frequency by 1/self.scale. For high frequencies, we keep the frequency.
scale_factors = (1 - smooth_mask) / self.scale + smooth_mask
return scale_factors
def get_inv_freq(self, device: torch.device) -> None:
"""Get the inverse frequency."""
if self.rope_dim == "1D":
assert self.max_position_embeddings is not None, "Max position embeddings required."
inv_freq = 1.0 / (
self.rope_theta ** (torch.arange(0, self.dim, 2, dtype=torch.float32, device=device) / self.dim)
)
if self.apply_yarn:
assert self.original_max_position_embeddings is not None, "Original max position embeddings required."
assert self.beta_slow is not None, "Beta slow value required."
assert self.beta_fast is not None, "Beta fast value required."
scale_factors = self.get_scale_factors(inv_freq, self.original_max_position_embeddings)
# Apply the scaling factors to inv_freq.
inv_freq = inv_freq * scale_factors
# Set the magnitude scaling factor.
self.mscale = float(self.get_mscale(self.scale) * self.attn_factor)
self.max_seq_len_cached = self.max_position_embeddings
self.inv_freq = inv_freq
elif self.rope_dim == "2D":
assert self.latent_shape is not None, "Latent shape required."
dim_h = self.dim // 2
spatial_inv_freq = 1.0 / (
self.rope_theta ** torch.arange(0, dim_h, 2, dtype=torch.float32, device=device) / dim_h
)
if self.apply_yarn:
assert self.original_latent_shape is not None, "Original latent shape required."
assert self.beta_slow is not None, "Beta slow value required."
assert self.beta_fast is not None, "Beta fast value required."
scale_factors = self.get_scale_factors(spatial_inv_freq, self.original_latent_shape[0])
spatial_inv_freq = spatial_inv_freq * scale_factors
self.mscale = float(self.get_mscale(self.scale) * self.attn_factor)
self.spatial_inv_freq = spatial_inv_freq
self.max_seq_len_cached = max(self.latent_shape)
elif self.rope_dim == "3D":
assert self.latent_shape is not None, "Latent shape required."
dim_h = self.dim // 6 * 2
dim_t = self.dim - 2 * dim_h
self.dim_spatial_range = torch.arange(0, dim_h, 2)[: (dim_h // 2)].float().to(device) / dim_h
spatial_inv_freq = 1.0 / (self.rope_theta**self.dim_spatial_range)
self.dim_temporal_range = torch.arange(0, dim_t, 2)[: (dim_t // 2)].float().to(device) / dim_t
temporal_inv_freq = 1.0 / (self.rope_theta**self.dim_temporal_range)
if self.apply_yarn:
assert self.original_latent_shape is not None, "Original latent shape required."
assert self.beta_slow is not None, "Beta slow value required."
assert self.beta_fast is not None, "Beta fast value required."
scale_factors_spatial = self.get_scale_factors(spatial_inv_freq, self.original_latent_shape[1])
spatial_inv_freq = spatial_inv_freq * scale_factors_spatial
scale_factors_temporal = self.get_scale_factors(temporal_inv_freq, self.original_latent_shape[0])
temporal_inv_freq = temporal_inv_freq * scale_factors_temporal
self.mscale = float(self.get_mscale(self.scale) * self.attn_factor)
self.spatial_inv_freq = spatial_inv_freq
self.temporal_inv_freq = temporal_inv_freq
self.max_seq_len_cached = max(self.latent_shape)
else:
raise ValueError(f"Invalid RoPE dimensionality: {self.rope_dim}")
self.freqs = self.compute_freqs()
class RotaryPositionEmbeddingPytorchV2(RotaryPositionEmbedding):
"""
Rotary Position Embedding that works in the same way as the TransformerEngine RoPE
(https://github.com/NVIDIA/TransformerEngine/blob/main/transformer_engine/pytorch/attention.py)
"""
def __init__(
self,
seq_len: int,
training_type: str = None,
**kwargs,
):
super().__init__(
**kwargs,
)
emb = self.create_rope_freqs(seq_len=seq_len, training_type=training_type)
emb = emb.transpose(0, 1).contiguous() # [seq, 1, 1, dim] -> [1, seq, 1, dim]
assert emb.shape[0] == 1 and emb.shape[2] == 1, f"emb shape: {emb.shape}"
# cos/sin first then dtype conversion for better precision
self.register_buffer("cos_cached", torch.cos(emb), persistent=False)
self.register_buffer("sin_cached", torch.sin(emb), persistent=False)
def create_rope_freqs(self, seq_len: int, training_type: str = None) -> torch.Tensor:
"""
Create rotary position embedding frequencies.
Args:
seq_len (int): Sequence length of a sample.
Returns:
torch.Tensor: The computed positional embeddings.
"""
if self.rope_dim == "1D":
freqs = super().forward(seq_len=seq_len)
emb = torch.cat((freqs, freqs), dim=-1)
emb = emb.reshape(emb.size(0), 1, 1, emb.size(1))
elif self.rope_dim in ["2D", "3D"]:
emb = super().forward(seq_len=seq_len)
if training_type == "text_to_video":
# since we added <bov> token at the beginning of the video for text2world, we also extend the position embedding by one token in the beginning
bov_pe = torch.zeros((1, *emb.shape[1:]), device=emb.device)
emb = torch.cat((bov_pe, emb), dim=0)
else:
raise ValueError(f"Invalid RoPE dimensionality: {self.rope_dim}")
if self.pad_to_multiple_of is not None and emb.shape[0] % self.pad_to_multiple_of != 0:
# Round up to the nearest multiple of pad_to_multiple_of
pad_len = self.pad_to_multiple_of - emb.shape[0] % self.pad_to_multiple_of
emb = torch.cat((emb, torch.zeros((pad_len, *emb.shape[1:]), device=emb.device)), dim=0)
return emb
def forward(
self, q: torch.Tensor, k: torch.Tensor, input_pos: Optional[torch.Tensor] = None, seq_len: Optional[int] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
if q.dtype != self.cos_cached.dtype:
self.cos_cached = self.cos_cached.to(q.dtype)
self.sin_cached = self.sin_cached.to(q.dtype)
cos_emb = self.cos_cached
sin_emb = self.sin_cached
if input_pos is not None:
cos_emb = cos_emb[:, input_pos, :, :]
sin_emb = sin_emb[:, input_pos, :, :]
elif seq_len is not None:
cos_emb = cos_emb[:, :seq_len, :, :]
sin_emb = sin_emb[:, :seq_len, :, :]
q = _apply_rotary_pos_emb_te(q, cos_emb, sin_emb)
k = _apply_rotary_pos_emb_te(k, cos_emb, sin_emb)
return q, k
class RotaryPositionEmbeddingPytorchV1(RotaryPositionEmbedding):
"""
Rotary Position Embedding that works in the same way as
mistral_inference (https://github.com/mistralai/mistral-inference/blob/main/src/mistral_inference/rope.py)
or llama3 (https://github.com/meta-llama/llama3/blob/main/llama/model.py)
"""
def __init__(
self,
**kwargs,
):
super().__init__(
**kwargs,
)
if self.rope_dim == "1D":
emb = torch.stack((self.freqs, self.freqs), dim=-1).reshape(*self.freqs.shape[:-1], -1)
elif self.rope_dim in ["2D", "3D"]:
emb = rearrange(self.freqs, "s 1 1 d -> s d").float()
self.register_buffer("cos_cached", (emb.cos() * self.mscale)[None, :, None, :], persistent=False)
self.register_buffer("sin_cached", (emb.sin() * self.mscale)[None, :, None, :], persistent=False)
def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
"""Rotate half the hidden dimensions of the input tensor."""
x_reshaped = x.reshape(*x.shape[:-1], -1, 2)
x1 = x_reshaped[..., 0]
x2 = x_reshaped[..., 1]
output = torch.stack((-x2, x1), dim=-1).reshape(*x.shape)
return output
def forward(
self, q: torch.Tensor, k: torch.Tensor, input_pos: Optional[torch.Tensor] = None, seq_len: Optional[int] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass for the rotary position embedding.
Args:
q (torch.Tensor): Query tensor.
k (torch.Tensor): Key tensor.
input_pos (Optional[torch.Tensor]): Starting position for the sequence.
seq_len (Optional[int]): Length of the sequence.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors.
"""
if self.apply_yarn and seq_len > self.max_seq_len_cached:
freqs = super().forward(seq_len)
if self.rope_dim == "1D":
emb = torch.stack((freqs, freqs), dim=-1).reshape(*freqs.shape[:-1], -1)
elif self.rope_dim in ["2D", "3D"]:
emb = rearrange(freqs, "s 1 1 d -> s d").float()
else:
raise ValueError(f"Invalid RoPE dimensionality: {self.rope_dim}")
self.register_buffer(
"cos_cached", (emb.cos() * self.mscale)[None, :, None, :].to(q.dtype), persistent=False
)
self.register_buffer(
"sin_cached", (emb.sin() * self.mscale)[None, :, None, :].to(q.dtype), persistent=False
)
if input_pos is not None:
cos_cached = self.cos_cached[:, input_pos]
sin_cached = self.sin_cached[:, input_pos]
else:
assert (
self.cos_cached.shape[1] >= seq_len
), f"Invalid sequence length; cos_cached.shape {self.cos_cached.shape}, seq_len {seq_len}."
cos_cached = self.cos_cached[:, :seq_len, ...]
sin_cached = self.sin_cached[:, :seq_len, ...]
xq = q * cos_cached + self.rotate_half(q) * sin_cached
xk = k * cos_cached + self.rotate_half(k) * sin_cached
return xq.type_as(q), xk.type_as(k)
class SinCosPosEmbAxisTE(torch.nn.Module):
def __init__(
self,
dim: int,
latent_shape: Optional[List[int]] = None,
pad_to_multiple_of: Optional[int] = None,
dtype: torch.dtype = torch.bfloat16,
**kwargs,
):
"""
Args:
dim (int): Dimensionality of the input tensor.
latent_shape (Optional[List[int]]): Shape of the latent tensor for video or image inputs.
pad_to_multiple_of (Optional[int]): Pad the position embedding to a multiple of this value.
dtype (torch.dtype): Data type of the position embedding tensor.
"""
super().__init__()
dim_h = dim // 6 * 2
dim_w = dim_h
dim_t = dim - 2 * dim_h
assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}"
self.latent_shape = latent_shape
T, H, W = latent_shape
emb_h = get_1d_sincos_pos_embed_from_grid(dim_h, pos=np.arange(H))
emb_w = get_1d_sincos_pos_embed_from_grid(dim_w, pos=np.arange(W))
emb_t = get_1d_sincos_pos_embed_from_grid(dim_t, pos=np.arange(T))
self.register_buffer("pos_emb_h", torch.from_numpy(emb_h).to(dtype=dtype, device="cuda"), persistent=False)
self.register_buffer("pos_emb_w", torch.from_numpy(emb_w).to(dtype=dtype, device="cuda"), persistent=False)
self.register_buffer("pos_emb_t", torch.from_numpy(emb_t).to(dtype=dtype, device="cuda"), persistent=False)
self.pad_to_multiple_of = pad_to_multiple_of
def forward(
self,
training_type: str = None,
) -> torch.Tensor:
T, H, W = self.latent_shape
emb = torch.cat(
[
repeat(self.pos_emb_t, "t d-> t h w d", h=H, w=W),
repeat(self.pos_emb_h, "h d-> t h w d", t=T, w=W),
repeat(self.pos_emb_w, "w d-> t h w d", t=T, h=H),
],
dim=-1,
)
# Flatten the T,H,W dimensions
emb = rearrange(emb, "t h w d -> (t h w) d")
if training_type == "text_to_video":
bov_pe = torch.zeros((1, *emb.shape[1:]), device=emb.device, dtype=emb.dtype)
emb = torch.cat((bov_pe, emb), dim=0)
if self.pad_to_multiple_of is not None and emb.shape[0] % self.pad_to_multiple_of != 0:
pad_len = self.pad_to_multiple_of - emb.shape[0] % self.pad_to_multiple_of
emb = torch.cat((emb, torch.zeros((pad_len, *emb.shape[1:]), device=emb.device, dtype=emb.dtype)), dim=0)
seq_len, dim = emb.shape
emb = emb.reshape(1, seq_len, dim)
return emb
|