|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
def split_with_overlap(video_BCTHW, num_video_frames, overlap=2, tobf16=True): |
|
""" |
|
Splits the video tensor into chunks of num_video_frames with a specified overlap. |
|
|
|
Args: |
|
- video_BCTHW (torch.Tensor): Input tensor with shape [Batch, Channels, Time, Height, Width]. |
|
- num_video_frames (int): Number of frames per chunk. |
|
- overlap (int): Number of overlapping frames between chunks. |
|
|
|
Returns: |
|
- List of torch.Tensors: List of video chunks with overlap. |
|
""" |
|
|
|
B, C, T, H, W = video_BCTHW.shape |
|
|
|
|
|
assert overlap < num_video_frames, "Overlap should be less than num_video_frames." |
|
|
|
|
|
chunks = [] |
|
|
|
|
|
step = num_video_frames - overlap |
|
|
|
|
|
for start in range(0, T - overlap, step): |
|
end = start + num_video_frames |
|
|
|
if end > T: |
|
|
|
num_padding_frames = end - T |
|
chunk = F.pad(video_BCTHW[:, :, start:T, :, :], (0, 0, 0, 0, 0, num_padding_frames), mode="reflect") |
|
else: |
|
|
|
chunk = video_BCTHW[:, :, start:end, :, :] |
|
if tobf16: |
|
chunks.append(chunk.to(torch.bfloat16)) |
|
else: |
|
chunks.append(chunk) |
|
return chunks |
|
|
|
|
|
def linear_blend_video_list(videos, D): |
|
""" |
|
Linearly blends a list of videos along the time dimension with overlap length D. |
|
|
|
Parameters: |
|
- videos: list of video tensors, each of shape [b, c, t, h, w] |
|
- D: int, overlap length |
|
|
|
Returns: |
|
- output_video: blended video tensor of shape [b, c, L, h, w] |
|
""" |
|
assert len(videos) >= 2, "At least two videos are required." |
|
b, c, t, h, w = videos[0].shape |
|
N = len(videos) |
|
|
|
|
|
for video in videos: |
|
assert video.shape == (b, c, t, h, w), "All videos must have the same shape." |
|
|
|
|
|
L = N * t - D * (N - 1) |
|
output_video = torch.zeros((b, c, L, h, w), device=videos[0].device) |
|
|
|
output_index = 0 |
|
|
|
for i in range(N): |
|
if i == 0: |
|
|
|
output_video[:, :, output_index : output_index + t - D, :, :] = videos[i][:, :, : t - D, :, :] |
|
output_index += t - D |
|
else: |
|
|
|
blend_weights = torch.linspace(0, 1, steps=D, device=videos[0].device) |
|
|
|
for j in range(D): |
|
w1 = 1 - blend_weights[j] |
|
w2 = blend_weights[j] |
|
frame_from_prev = videos[i - 1][:, :, t - D + j, :, :] |
|
frame_from_curr = videos[i][:, :, j, :, :] |
|
output_frame = w1 * frame_from_prev + w2 * frame_from_curr |
|
output_video[:, :, output_index, :, :] = output_frame |
|
output_index += 1 |
|
|
|
if i < N - 1: |
|
|
|
frames_to_copy = t - 2 * D |
|
if frames_to_copy > 0: |
|
output_video[:, :, output_index : output_index + frames_to_copy, :, :] = videos[i][ |
|
:, :, D : t - D, :, : |
|
] |
|
output_index += frames_to_copy |
|
else: |
|
|
|
frames_to_copy = t - D |
|
output_video[:, :, output_index : output_index + frames_to_copy, :, :] = videos[i][:, :, D:, :, :] |
|
output_index += frames_to_copy |
|
|
|
return output_video |
|
|