EthanZyh's picture
copied from EthanZyh/DiffusionText2WorldGeneration
8c31d70
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from .log import log
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
from .categories import UNSAFE_CATEGORIES
from .guardrail_core import ContentSafetyGuardrail, GuardrailRunner
from .misc import misc, Color, timer
SAFE = Color.green("SAFE")
UNSAFE = Color.red("UNSAFE")
DEFAULT_CHECKPOINT_DIR = "checkpoints/Cosmos-1.0-Guardrail/aegis"
class Aegis(ContentSafetyGuardrail):
def __init__(
self,
checkpoint_dir: str = DEFAULT_CHECKPOINT_DIR,
device="cuda" if torch.cuda.is_available() else "cpu",
) -> None:
self.checkpoint_dir = checkpoint_dir
self.device = device
self.dtype = torch.bfloat16
base_model_id = "meta-llama/LlamaGuard-7b"
aegis_adapter = "nvidia/Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0"
base_model = AutoModelForCausalLM.from_pretrained(base_model_id, cache_dir=self.checkpoint_dir)
self.tokenizer = AutoTokenizer.from_pretrained(base_model_id, cache_dir=self.checkpoint_dir)
self.model = PeftModel.from_pretrained(base_model, aegis_adapter, cache_dir=self.checkpoint_dir)
self.model.to(self.device, dtype=self.dtype).eval()
def get_moderation_prompt(self, user_prompt: str) -> str:
"""Create the moderation prompt for the Aegis model."""
full_prompt = f"""[INST] Task: Check if there is unsafe content in 'User' messages in conversations according our safety policy with the below categories.
<BEGIN UNSAFE CONTENT CATEGORIES>
{"".join([f"{category['instruction']}" for category in UNSAFE_CATEGORIES])}
<END UNSAFE CONTENT CATEGORIES>
<BEGIN CONVERSATION>
"""
full_prompt += f"User: {user_prompt}\n\n"
full_prompt += """<END CONVERSATION>
Provide your safety assessment for User in the above conversation:
- First line must read 'safe' or 'unsafe'.
- If unsafe, a second line must include a comma-separated list of violated categories. [/INST]"""
return full_prompt
def get_aegis_block_message(self, moderation_output: str) -> str:
"""Extract the blocked category and reason from the Aegis model output."""
block_msg = "Prompt blocked by Aegis."
try:
# Extract blocked category and reason
if len(moderation_output.split("\n")) >= 2:
moderation_output_list = moderation_output.split("\n")
blocked_category = int(moderation_output_list[1].lstrip("O")) - 1
if 0 <= blocked_category < len(UNSAFE_CATEGORIES):
blocked_reason = UNSAFE_CATEGORIES[blocked_category]["blocked_reason"]
blocked_category_name = UNSAFE_CATEGORIES[blocked_category]["category"]
block_msg = f"{blocked_category_name}: {blocked_reason}"
except Exception as e:
log.warning(f"Unable to extract blocked category and reason from Aegis output: {e}")
return block_msg
def filter_aegis_output(self, prompt: str) -> tuple[bool, str]:
"""Filter the Aegis model output and return the safety status and message."""
full_prompt = self.get_moderation_prompt(prompt)
inputs = self.tokenizer([full_prompt], add_special_tokens=False, return_tensors="pt").to(self.device)
output = self.model.generate(**inputs, max_new_tokens=100, pad_token_id=self.tokenizer.eos_token_id)
prompt_len = inputs["input_ids"].shape[-1]
moderation_output = self.tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
if "unsafe" in moderation_output.lower():
block_msg = self.get_aegis_block_message(moderation_output)
return False, block_msg
else:
return True, ""
def is_safe(self, prompt: str) -> tuple[bool, str]:
"""Check if the input prompt is safe according to the Aegis model."""
try:
return self.filter_aegis_output(prompt)
except Exception as e:
log.error(f"Unexpected error occurred when running Aegis guardrail: {e}")
return True, "Unexpected error occurred when running Aegis guardrail."
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, required=True, help="Input prompt")
parser.add_argument(
"--checkpoint_dir",
type=str,
help="Path to the Aegis checkpoint folder",
default=DEFAULT_CHECKPOINT_DIR,
)
return parser.parse_args()
def main(args):
aegis = Aegis(checkpoint_dir=args.checkpoint_dir)
runner = GuardrailRunner(safety_models=[aegis])
with timer("aegis safety check"):
safety, message = runner.run_safety_check(args.prompt)
log.info(f"Input is: {'SAFE' if safety else 'UNSAFE'}")
log.info(f"Message: {message}") if not safety else None
if __name__ == "__main__":
args = parse_args()
main(args)