|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
|
|
from .log import log |
|
import torch |
|
from peft import PeftModel |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
from .categories import UNSAFE_CATEGORIES |
|
from .guardrail_core import ContentSafetyGuardrail, GuardrailRunner |
|
from .misc import misc, Color, timer |
|
|
|
SAFE = Color.green("SAFE") |
|
UNSAFE = Color.red("UNSAFE") |
|
|
|
DEFAULT_CHECKPOINT_DIR = "checkpoints/Cosmos-1.0-Guardrail/aegis" |
|
|
|
|
|
class Aegis(ContentSafetyGuardrail): |
|
def __init__( |
|
self, |
|
checkpoint_dir: str = DEFAULT_CHECKPOINT_DIR, |
|
device="cuda" if torch.cuda.is_available() else "cpu", |
|
) -> None: |
|
self.checkpoint_dir = checkpoint_dir |
|
self.device = device |
|
self.dtype = torch.bfloat16 |
|
base_model_id = "meta-llama/LlamaGuard-7b" |
|
aegis_adapter = "nvidia/Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0" |
|
base_model = AutoModelForCausalLM.from_pretrained(base_model_id, cache_dir=self.checkpoint_dir) |
|
self.tokenizer = AutoTokenizer.from_pretrained(base_model_id, cache_dir=self.checkpoint_dir) |
|
self.model = PeftModel.from_pretrained(base_model, aegis_adapter, cache_dir=self.checkpoint_dir) |
|
self.model.to(self.device, dtype=self.dtype).eval() |
|
|
|
def get_moderation_prompt(self, user_prompt: str) -> str: |
|
"""Create the moderation prompt for the Aegis model.""" |
|
full_prompt = f"""[INST] Task: Check if there is unsafe content in 'User' messages in conversations according our safety policy with the below categories. |
|
|
|
<BEGIN UNSAFE CONTENT CATEGORIES> |
|
{"".join([f"{category['instruction']}" for category in UNSAFE_CATEGORIES])} |
|
<END UNSAFE CONTENT CATEGORIES> |
|
|
|
<BEGIN CONVERSATION> |
|
|
|
""" |
|
full_prompt += f"User: {user_prompt}\n\n" |
|
full_prompt += """<END CONVERSATION> |
|
|
|
Provide your safety assessment for User in the above conversation: |
|
- First line must read 'safe' or 'unsafe'. |
|
- If unsafe, a second line must include a comma-separated list of violated categories. [/INST]""" |
|
|
|
return full_prompt |
|
|
|
def get_aegis_block_message(self, moderation_output: str) -> str: |
|
"""Extract the blocked category and reason from the Aegis model output.""" |
|
block_msg = "Prompt blocked by Aegis." |
|
try: |
|
|
|
if len(moderation_output.split("\n")) >= 2: |
|
moderation_output_list = moderation_output.split("\n") |
|
blocked_category = int(moderation_output_list[1].lstrip("O")) - 1 |
|
if 0 <= blocked_category < len(UNSAFE_CATEGORIES): |
|
blocked_reason = UNSAFE_CATEGORIES[blocked_category]["blocked_reason"] |
|
blocked_category_name = UNSAFE_CATEGORIES[blocked_category]["category"] |
|
block_msg = f"{blocked_category_name}: {blocked_reason}" |
|
except Exception as e: |
|
log.warning(f"Unable to extract blocked category and reason from Aegis output: {e}") |
|
return block_msg |
|
|
|
def filter_aegis_output(self, prompt: str) -> tuple[bool, str]: |
|
"""Filter the Aegis model output and return the safety status and message.""" |
|
full_prompt = self.get_moderation_prompt(prompt) |
|
inputs = self.tokenizer([full_prompt], add_special_tokens=False, return_tensors="pt").to(self.device) |
|
output = self.model.generate(**inputs, max_new_tokens=100, pad_token_id=self.tokenizer.eos_token_id) |
|
prompt_len = inputs["input_ids"].shape[-1] |
|
moderation_output = self.tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True) |
|
|
|
if "unsafe" in moderation_output.lower(): |
|
block_msg = self.get_aegis_block_message(moderation_output) |
|
return False, block_msg |
|
else: |
|
return True, "" |
|
|
|
def is_safe(self, prompt: str) -> tuple[bool, str]: |
|
"""Check if the input prompt is safe according to the Aegis model.""" |
|
try: |
|
return self.filter_aegis_output(prompt) |
|
except Exception as e: |
|
log.error(f"Unexpected error occurred when running Aegis guardrail: {e}") |
|
return True, "Unexpected error occurred when running Aegis guardrail." |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--prompt", type=str, required=True, help="Input prompt") |
|
parser.add_argument( |
|
"--checkpoint_dir", |
|
type=str, |
|
help="Path to the Aegis checkpoint folder", |
|
default=DEFAULT_CHECKPOINT_DIR, |
|
) |
|
return parser.parse_args() |
|
|
|
|
|
def main(args): |
|
aegis = Aegis(checkpoint_dir=args.checkpoint_dir) |
|
runner = GuardrailRunner(safety_models=[aegis]) |
|
with timer("aegis safety check"): |
|
safety, message = runner.run_safety_check(args.prompt) |
|
log.info(f"Input is: {'SAFE' if safety else 'UNSAFE'}") |
|
log.info(f"Message: {message}") if not safety else None |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |
|
|