|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import namedtuple |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from .ar_tokenizer_modules import CausalConv3d, DecoderFactorized, EncoderFactorized |
|
from .ar_tokenizer_quantizers import FSQuantizer |
|
from .log import log |
|
|
|
NetworkEval = namedtuple("NetworkEval", ["reconstructions", "quant_loss", "quant_info"]) |
|
|
|
|
|
class CausalDiscreteVideoTokenizer(nn.Module): |
|
def __init__(self, z_channels: int, z_factor: int, embedding_dim: int, **kwargs) -> None: |
|
super().__init__() |
|
self.name = kwargs.get("name", "CausalDiscreteVideoTokenizer") |
|
self.embedding_dim = embedding_dim |
|
self.encoder = EncoderFactorized(z_channels=z_factor * z_channels, **kwargs) |
|
self.decoder = DecoderFactorized(z_channels=z_channels, **kwargs) |
|
|
|
self.quant_conv = CausalConv3d(z_factor * z_channels, embedding_dim, kernel_size=1, padding=0) |
|
self.post_quant_conv = CausalConv3d(embedding_dim, z_channels, kernel_size=1, padding=0) |
|
|
|
self.quantizer = FSQuantizer(**kwargs) |
|
|
|
num_parameters = sum(param.numel() for param in self.parameters()) |
|
log.debug(f"model={self.name}, num_parameters={num_parameters:,}") |
|
log.debug(f"z_channels={z_channels}, embedding_dim={self.embedding_dim}.") |
|
|
|
def to(self, *args, **kwargs): |
|
setattr(self.quantizer, "dtype", kwargs.get("dtype", torch.bfloat16)) |
|
return super(CausalDiscreteVideoTokenizer, self).to(*args, **kwargs) |
|
|
|
def encode(self, x): |
|
h = self.encoder(x) |
|
h = self.quant_conv(h) |
|
return self.quantizer(h) |
|
|
|
def decode(self, quant): |
|
quant = self.post_quant_conv(quant) |
|
return self.decoder(quant) |
|
|
|
def forward(self, input): |
|
quant_info, quant_codes, quant_loss = self.encode(input) |
|
reconstructions = self.decode(quant_codes) |
|
if self.training: |
|
return dict(reconstructions=reconstructions, quant_loss=quant_loss, quant_info=quant_info) |
|
return NetworkEval(reconstructions=reconstructions, quant_loss=quant_loss, quant_info=quant_info) |
|
|