DiffusionText2WorldGeneration / ar_tokenizer_patching.py
EthanZyh's picture
copied from EthanZyh/DiffusionText2WorldGeneration
8c31d70
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The patcher and unpatcher implementation for 2D and 3D data."""
import torch
import torch.nn.functional as F
from einops import rearrange
_WAVELETS = {
"haar": torch.tensor([0.7071067811865476, 0.7071067811865476]),
"rearrange": torch.tensor([1.0, 1.0]),
}
_PERSISTENT = False
class Patcher(torch.nn.Module):
"""A module to convert image tensors into patches using torch operations.
The main difference from `class Patching` is that this module implements
all operations using torch, rather than python or numpy, for efficiency purpose.
It's bit-wise identical to the Patching module outputs, with the added
benefit of being torch.jit scriptable.
"""
def __init__(self, patch_size=1, patch_method="haar"):
super().__init__()
self.patch_size = patch_size
self.patch_method = patch_method
self.register_buffer("wavelets", _WAVELETS[patch_method], persistent=_PERSISTENT)
self.range = range(int(torch.log2(torch.tensor(self.patch_size)).item()))
self.register_buffer("_arange", torch.arange(_WAVELETS[patch_method].shape[0]), persistent=_PERSISTENT)
for param in self.parameters():
param.requires_grad = False
def forward(self, x):
if self.patch_method == "haar":
return self._haar(x)
elif self.patch_method == "rearrange":
return self._arrange(x)
else:
raise ValueError("Unknown patch method: " + self.patch_method)
def _dwt(self, x, mode="reflect", rescale=False):
dtype = x.dtype
h = self.wavelets
n = h.shape[0]
g = x.shape[1]
hl = h.flip(0).reshape(1, 1, -1).repeat(g, 1, 1)
hh = (h * ((-1) ** self._arange)).reshape(1, 1, -1).repeat(g, 1, 1)
hh = hh.to(dtype=dtype)
hl = hl.to(dtype=dtype)
x = F.pad(x, pad=(n - 2, n - 1, n - 2, n - 1), mode=mode).to(dtype)
xl = F.conv2d(x, hl.unsqueeze(2), groups=g, stride=(1, 2))
xh = F.conv2d(x, hh.unsqueeze(2), groups=g, stride=(1, 2))
xll = F.conv2d(xl, hl.unsqueeze(3), groups=g, stride=(2, 1))
xlh = F.conv2d(xl, hh.unsqueeze(3), groups=g, stride=(2, 1))
xhl = F.conv2d(xh, hl.unsqueeze(3), groups=g, stride=(2, 1))
xhh = F.conv2d(xh, hh.unsqueeze(3), groups=g, stride=(2, 1))
out = torch.cat([xll, xlh, xhl, xhh], dim=1)
if rescale:
out = out / 2
return out
def _haar(self, x):
for _ in self.range:
x = self._dwt(x, rescale=True)
return x
def _arrange(self, x):
x = rearrange(x, "b c (h p1) (w p2) -> b (c p1 p2) h w", p1=self.patch_size, p2=self.patch_size).contiguous()
return x
class Patcher3D(Patcher):
"""A 3D discrete wavelet transform for video data, expects 5D tensor, i.e. a batch of videos."""
def __init__(self, patch_size=1, patch_method="haar"):
super().__init__(patch_method=patch_method, patch_size=patch_size)
self.register_buffer(
"patch_size_buffer", patch_size * torch.ones([1], dtype=torch.int32), persistent=_PERSISTENT
)
def _dwt(self, x, mode="reflect", rescale=False):
dtype = x.dtype
h = self.wavelets
n = h.shape[0]
g = x.shape[1]
hl = h.flip(0).reshape(1, 1, -1).repeat(g, 1, 1)
hh = (h * ((-1) ** self._arange)).reshape(1, 1, -1).repeat(g, 1, 1)
hh = hh.to(dtype=dtype)
hl = hl.to(dtype=dtype)
# Handles temporal axis.
x = F.pad(x, pad=(max(0, n - 2), n - 1, n - 2, n - 1, n - 2, n - 1), mode=mode).to(dtype)
xl = F.conv3d(x, hl.unsqueeze(3).unsqueeze(4), groups=g, stride=(2, 1, 1))
xh = F.conv3d(x, hh.unsqueeze(3).unsqueeze(4), groups=g, stride=(2, 1, 1))
# Handles spatial axes.
xll = F.conv3d(xl, hl.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
xlh = F.conv3d(xl, hh.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
xhl = F.conv3d(xh, hl.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
xhh = F.conv3d(xh, hh.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
xlll = F.conv3d(xll, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xllh = F.conv3d(xll, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xlhl = F.conv3d(xlh, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xlhh = F.conv3d(xlh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xhll = F.conv3d(xhl, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xhlh = F.conv3d(xhl, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xhhl = F.conv3d(xhh, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xhhh = F.conv3d(xhh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
out = torch.cat([xlll, xllh, xlhl, xlhh, xhll, xhlh, xhhl, xhhh], dim=1)
if rescale:
out = out / (2 * torch.sqrt(torch.tensor(2.0)))
return out
def _haar(self, x):
xi, xv = torch.split(x, [1, x.shape[2] - 1], dim=2)
x = torch.cat([xi.repeat_interleave(self.patch_size, dim=2), xv], dim=2)
for _ in self.range:
x = self._dwt(x, rescale=True)
return x
def _arrange(self, x):
xi, xv = torch.split(x, [1, x.shape[2] - 1], dim=2)
x = torch.cat([xi.repeat_interleave(self.patch_size, dim=2), xv], dim=2)
x = rearrange(
x,
"b c (t p1) (h p2) (w p3) -> b (c p1 p2 p3) t h w",
p1=self.patch_size,
p2=self.patch_size,
p3=self.patch_size,
).contiguous()
return x
class UnPatcher(torch.nn.Module):
"""A module to convert patches into image tensorsusing torch operations.
The main difference from `class Unpatching` is that this module implements
all operations using torch, rather than python or numpy, for efficiency purpose.
It's bit-wise identical to the Unpatching module outputs, with the added
benefit of being torch.jit scriptable.
"""
def __init__(self, patch_size=1, patch_method="haar"):
super().__init__()
self.patch_size = patch_size
self.patch_method = patch_method
self.register_buffer("wavelets", _WAVELETS[patch_method], persistent=_PERSISTENT)
self.range = range(int(torch.log2(torch.tensor(self.patch_size)).item()))
self.register_buffer("_arange", torch.arange(_WAVELETS[patch_method].shape[0]), persistent=_PERSISTENT)
for param in self.parameters():
param.requires_grad = False
def forward(self, x):
if self.patch_method == "haar":
return self._ihaar(x)
elif self.patch_method == "rearrange":
return self._iarrange(x)
else:
raise ValueError("Unknown patch method: " + self.patch_method)
def _idwt(self, x, rescale=False):
dtype = x.dtype
h = self.wavelets
n = h.shape[0]
g = x.shape[1] // 4
hl = h.flip([0]).reshape(1, 1, -1).repeat([g, 1, 1])
hh = (h * ((-1) ** self._arange)).reshape(1, 1, -1).repeat(g, 1, 1)
hh = hh.to(dtype=dtype)
hl = hl.to(dtype=dtype)
xll, xlh, xhl, xhh = torch.chunk(x.to(dtype), 4, dim=1)
# Inverse transform.
yl = torch.nn.functional.conv_transpose2d(xll, hl.unsqueeze(3), groups=g, stride=(2, 1), padding=(n - 2, 0))
yl += torch.nn.functional.conv_transpose2d(xlh, hh.unsqueeze(3), groups=g, stride=(2, 1), padding=(n - 2, 0))
yh = torch.nn.functional.conv_transpose2d(xhl, hl.unsqueeze(3), groups=g, stride=(2, 1), padding=(n - 2, 0))
yh += torch.nn.functional.conv_transpose2d(xhh, hh.unsqueeze(3), groups=g, stride=(2, 1), padding=(n - 2, 0))
y = torch.nn.functional.conv_transpose2d(yl, hl.unsqueeze(2), groups=g, stride=(1, 2), padding=(0, n - 2))
y += torch.nn.functional.conv_transpose2d(yh, hh.unsqueeze(2), groups=g, stride=(1, 2), padding=(0, n - 2))
if rescale:
y = y * 2
return y
def _ihaar(self, x):
for _ in self.range:
x = self._idwt(x, rescale=True)
return x
def _iarrange(self, x):
x = rearrange(x, "b (c p1 p2) h w -> b c (h p1) (w p2)", p1=self.patch_size, p2=self.patch_size)
return x
class UnPatcher3D(UnPatcher):
"""A 3D inverse discrete wavelet transform for video wavelet decompositions."""
def __init__(self, patch_size=1, patch_method="haar"):
super().__init__(patch_method=patch_method, patch_size=patch_size)
def _idwt(self, x, rescale=False):
dtype = x.dtype
h = self.wavelets
g = x.shape[1] // 8 # split into 8 spatio-temporal filtered tesnors.
hl = h.flip([0]).reshape(1, 1, -1).repeat([g, 1, 1])
hh = (h * ((-1) ** self._arange)).reshape(1, 1, -1).repeat(g, 1, 1)
hl = hl.to(dtype=dtype)
hh = hh.to(dtype=dtype)
xlll, xllh, xlhl, xlhh, xhll, xhlh, xhhl, xhhh = torch.chunk(x, 8, dim=1)
# Height height transposed convolutions.
xll = F.conv_transpose3d(xlll, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xll += F.conv_transpose3d(xllh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xlh = F.conv_transpose3d(xlhl, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xlh += F.conv_transpose3d(xlhh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xhl = F.conv_transpose3d(xhll, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xhl += F.conv_transpose3d(xhlh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xhh = F.conv_transpose3d(xhhl, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xhh += F.conv_transpose3d(xhhh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
# Handles width transposed convolutions.
xl = F.conv_transpose3d(xll, hl.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
xl += F.conv_transpose3d(xlh, hh.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
xh = F.conv_transpose3d(xhl, hl.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
xh += F.conv_transpose3d(xhh, hh.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
# Handles time axis transposed convolutions.
x = F.conv_transpose3d(xl, hl.unsqueeze(3).unsqueeze(4), groups=g, stride=(2, 1, 1))
x += F.conv_transpose3d(xh, hh.unsqueeze(3).unsqueeze(4), groups=g, stride=(2, 1, 1))
if rescale:
x = x * (2 * torch.sqrt(torch.tensor(2.0)))
return x
def _ihaar(self, x):
for _ in self.range:
x = self._idwt(x, rescale=True)
x = x[:, :, self.patch_size - 1 :, ...]
return x
def _iarrange(self, x):
x = rearrange(
x,
"b (c p1 p2 p3) t h w -> b c (t p1) (h p2) (w p3)",
p1=self.patch_size,
p2=self.patch_size,
p3=self.patch_size,
)
x = x[:, :, self.patch_size - 1 :, ...]
return x