# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import imageio import torch from cosmos1.models.autoregressive.inference.world_generation_pipeline import ARBaseGenerationPipeline from cosmos1.models.autoregressive.utils.inference import add_common_arguments, load_vision_input, validate_args from .log import log def parse_args(): parser = argparse.ArgumentParser(description="Video to world generation demo script") # Add common arguments add_common_arguments(parser) parser.add_argument( "--ar_model_dir", type=str, default="Cosmos-1.0-Autoregressive-4B", ) parser.add_argument("--input_type", type=str, default="video", help="Type of input", choices=["image", "video"]) args = parser.parse_args() return args def main(args): """Run video-to-world generation demo. This function handles the main video-to-world generation pipeline, including: - Setting up the random seed for reproducibility - Initializing the generation pipeline with the provided configuration - Processing single or multiple images/videos from input - Generating videos from images/videos - Saving the generated videos to disk Args: cfg (argparse.Namespace): Configuration namespace containing: - Model configuration (checkpoint paths, model settings) - Generation parameters (temperature, top_p) - Input/output settings (images/videos, save paths) - Performance options (model offloading settings) The function will save: - Generated MP4 video files If guardrails block the generation, a critical log message is displayed and the function continues to the next prompt if available. """ inference_type = "base" # When the inference_type is "base", AR model does not take text as input, the world generation is purely based on the input video sampling_config = validate_args(args, inference_type) # Initialize base generation model pipeline pipeline = ARBaseGenerationPipeline( inference_type=inference_type, checkpoint_dir=args.checkpoint_dir, checkpoint_name=args.ar_model_dir, disable_diffusion_decoder=args.disable_diffusion_decoder, offload_guardrail_models=args.offload_guardrail_models, offload_diffusion_decoder=args.offload_diffusion_decoder, offload_network=args.offload_ar_model, offload_tokenizer=args.offload_tokenizer, ) # Load input image(s) or video(s) input_videos = load_vision_input( input_type=args.input_type, batch_input_path=args.batch_input_path, input_image_or_video_path=args.input_image_or_video_path, data_resolution=args.data_resolution, num_input_frames=args.num_input_frames, ) for idx, input_filename in enumerate(input_videos): inp_vid = input_videos[input_filename] # Generate video log.info(f"Run with image or video path: {input_filename}") out_vid = pipeline.generate( inp_vid=inp_vid, num_input_frames=args.num_input_frames, seed=args.seed, sampling_config=sampling_config, ) if out_vid is None: log.critical("Guardrail blocked base generation.") continue # Save video if args.input_image_or_video_path: out_vid_path = os.path.join(args.video_save_folder, f"{args.video_save_name}.mp4") else: out_vid_path = os.path.join(args.video_save_folder, f"{idx}.mp4") imageio.mimsave(out_vid_path, out_vid, fps=25) log.info(f"Saved video to {out_vid_path}") if __name__ == "__main__": torch._C._jit_set_texpr_fuser_enabled(False) args = parse_args() main(args)