# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional import torch import torch.nn as nn from torch.nn.modules.module import _IncompatibleKeys from .ar_modules_attention import Attention from .ar_modules_embedding import ( RotaryPositionEmbeddingPytorchV1, RotaryPositionEmbeddingPytorchV2, SinCosPosEmbAxisTE, ) from .ar_modules_mlp import MLP from .ar_modules_normalization import create_norm from .checkpoint import process_state_dict, substrings_to_ignore from .ar_utils_misc import maybe_convert_to_namespace from .log import log class TransformerBlock(nn.Module): """ A single transformer block consisting of an attention layer and a feed-forward layer. """ def __init__(self, layer_id: int, args=None): """ Initializes the TransformerBlock module. Args: layer_id: The ID of the transformer block. args: The model arguments containing hyperparameters. """ super().__init__() args = maybe_convert_to_namespace(args) attention_args = { "n_heads": args["n_heads"], "n_kv_heads": args["n_kv_heads"], "dim": args["dim"], "context_dim": None, "max_batch_size": args["max_batch_size"], "max_seq_len": args["max_seq_len"], "use_qk_normalization": args["use_qk_normalization"], "causal_mask": args["causal_mask"], "head_dim": args["head_dim"], "fuse_qkv": getattr(args, "fuse_qkv", False), "precision": getattr(args, "precision", "bfloat16"), "attn_type": getattr(args, "attn_type", "self"), } self.attention = Attention(**attention_args) self.has_cross_attention = False self.cross_attention, self.cross_attention_norm = None, None if args["insert_cross_attn"] and layer_id % args["insert_cross_attn_every_k_layers"] == 0: self.has_cross_attention = True cross_attention_args = attention_args.copy() cross_attention_args.update({"context_dim": args["context_dim"], "fuse_qkv": False, "attn_type": "cross"}) self.cross_attention = Attention(**cross_attention_args) self.cross_attention_norm = create_norm(args["norm_type"], dim=args["dim"], eps=args["norm_eps"]) self.feed_forward = MLP( dim=args["dim"], hidden_dim=args["ffn_hidden_size"], ) self.layer_id = layer_id self.attention_norm = create_norm(args["norm_type"], dim=args["dim"], eps=args["norm_eps"]) self.ffn_norm = create_norm(args["norm_type"], dim=args["dim"], eps=args["norm_eps"]) def forward( self, x: torch.Tensor, rope: RotaryPositionEmbeddingPytorchV2, input_pos: Optional[torch.Tensor] = None, mask: Optional[torch.Tensor] = None, context: Optional[torch.Tensor] = None, context_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Performs the forward pass of the TransformerBlock module. Args: x: The input tensor. input_pos: The position of the current sequence. Used in inference (with KV cache) only. freqs_cis: The precomputed frequency values for rotary position embeddings. mask: The attention mask tensor. context (Optional[torch.Tensor]): The context tensor added via cross-attn. context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor. Returns: The output tensor after applying the transformer block. """ # Apply attention and residual connection h = x + self.attention(self.attention_norm(x), rope=rope, input_pos=input_pos, mask=mask) # If insert cross-attention, apply CA and residual connection if self.has_cross_attention: h = h + self.cross_attention( self.cross_attention_norm(h), rope=rope, input_pos=input_pos, mask=context_mask, context=context ) # Apply feed-forward network and residual connection out = h + self.feed_forward(self.ffn_norm(h)) return out def init_weights(self): """ Initializes the weights of the transformer block. """ for norm in (self.attention_norm, self.ffn_norm): norm.reset_parameters() self.attention.init_weights(self.weight_init_std) self.feed_forward.init_weights(self.weight_init_std) if self.has_cross_attention: self.cross_attention_norm.reset_parameters() self.cross_attention.init_weights(self.weight_init_std) # zero-init the final output layer of cross-attention # nn.init.zeros_(self.cross_attention.wo.weight) class Transformer(nn.Module): """ The Transformer network consisting of transformer blocks. """ def __init__(self, params, tokenizer_config=None, init_weights: bool = True): """ Initializes the Transformer module. Args: params: The model parameters containing hyperparameters. tokenizer_config: The model tokenizer configuration. init_weights (bool): Whether to initialize the weights of the transformer following TorchTitan's Llama3 initialization scheme. """ super().__init__() # Check if self.params is an OmegaConf DictConfig instance self.params = maybe_convert_to_namespace(params) self.vocab_size = params["vocab_size"] self.n_layers = params["n_layers"] self.precision = getattr(torch, params["precision"]) self.tokenizer_config = tokenizer_config self.num_video_frames = params["num_video_frames"] # Token embeddings self.tok_embeddings = self._create_token_embeddings() self.rope_config = self._create_rope_config() # Transformer layers self.layers = nn.ModuleList( [TransformerBlock(layer_id, self.params).to(self.precision) for layer_id in range(self.n_layers)] ) # Final layer normalization self.norm = create_norm(self.params["norm_type"], dim=self.params["dim"], eps=self.params["norm_eps"]).to( self.precision ) if self.params["pytorch_rope_version"] == "v1": self.rope = RotaryPositionEmbeddingPytorchV1(**self.rope_config) elif self.params["pytorch_rope_version"] == "v2": # Rotary position embeddings training_type = self.tokenizer_config.training_type if self.tokenizer_config is not None else None self.rope = RotaryPositionEmbeddingPytorchV2( seq_len=self.params["max_seq_len"], training_type=training_type, **self.rope_config ) else: raise ValueError(f"Invalid PyTorch RoPE version: {self.params['pytorch_rope_version']}") # Causal mask self.causal_mask = torch.tril( torch.ones(self.params["max_seq_len"], self.params["max_seq_len"], dtype=torch.bool) ).cuda() # Output projection self.output = self._create_output_projection() # Freeze network parameters for finetuning w/ cross-attention self.has_cross_attention = getattr(params, "insert_cross_attn", False) # Absolute position embeddings if self.params["apply_abs_pos_emb"]: self.pos_emb_config = self._create_abs_pos_emb_config() self.pos_emb, self.abs_pos_emb = self._initialize_abs_pos_emb() def _create_rope_config(self) -> Dict: shape_map = { "3D": self.params["video_latent_shape"], "1D": None, } latent_shape = shape_map.get(self.params["rope_dim"], None) head_dim = self.params["head_dim"] if head_dim is None: head_dim = self.params["dim"] // self.params["n_heads"] return { "dim": head_dim, "max_position_embeddings": self.params["max_seq_len"], "original_max_position_embeddings": self.params["original_seq_len"], "rope_theta": self.params["rope_theta"], "apply_yarn": self.params["apply_yarn"], "scale": self.params["yarn_scale"], "beta_fast": self.params["yarn_beta_fast"], "beta_slow": self.params["yarn_beta_slow"], "rope_dim": self.params["rope_dim"], "latent_shape": latent_shape, "original_latent_shape": self.params["original_latent_shape"], "pad_to_multiple_of": self.params["pad_to_multiple_of"], } def _create_abs_pos_emb_config(self): shape_map = { "3D": self.params["video_latent_shape"], "1D": None, } latent_shape = shape_map.get(self.params["rope_dim"], None) return { "dim": self.params["dim"], "latent_shape": latent_shape, "pad_to_multiple_of": self.params["pad_to_multiple_of"], } def _create_token_embeddings(self, vocab_size: int = None): """ Create token embeddings. Returns: nn.Module: Token embeddings module. """ if vocab_size is None: vocab_size = self.params["vocab_size"] return nn.Embedding(vocab_size, self.params["dim"]).to(self.precision) def _create_output_projection(self, vocab_size: int = None): """ Create the output projection layer. Args: vocab_size (int): Vocabulary size (to override the default vocab size). Returns: LinearTE: Output projection layer. """ if vocab_size is None: vocab_size = self.params["vocab_size"] return nn.Linear(self.params["dim"], vocab_size, bias=False).to(self.precision) def _initialize_abs_pos_emb(self): pos_emb = SinCosPosEmbAxisTE(**self.pos_emb_config) training_type = self.tokenizer_config.training_type if self.tokenizer_config is not None else None abs_pos_emb = pos_emb.forward(training_type=training_type) return pos_emb, abs_pos_emb def forward( self, tokens: Optional[torch.Tensor] = None, input_pos: Optional[torch.Tensor] = None, token_embeddings: Optional[torch.Tensor] = None, context: Optional[torch.Tensor] = None, context_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Performs the forward pass of the Transformer module. Args: tokens (torch.Tensor, optional): The input tensor of token IDs. input_pos (Optional[torch.Tensor]): The position of the current sequence. Used in inference with KV cache. token_embeddings (torch.Tensor, optional): Precomputed token embeddings. If provided, tokens should be None. context (Optional[torch.Tensor]): The context tensor added via cross-attn. context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor. Returns: The output tensor after applying the transformer layers. """ # Token embeddings assert ( tokens is None or token_embeddings is None ), "Either tokens or token_embeddings should be provided, not both." if token_embeddings is None: seq_len = tokens.shape[1] h = self.tok_embeddings(tokens) else: seq_len = token_embeddings.shape[1] h = token_embeddings # Create attention mask mask = self._create_attention_mask(input_pos=input_pos) # Prepare layer arguments layer_kwargs = self._prepare_layer_kwargs( input_pos=input_pos, mask=mask, context=context, context_mask=context_mask, ) # Apply transformer layers for layer in self.layers: if self.params["apply_abs_pos_emb"]: h = self.apply_abs_pos_emb(h, input_pos=input_pos) h = layer(h, **layer_kwargs) # Apply final layer normalization h = self.norm(h) # Output linear projection output = self.output(h) return output def _create_attention_mask(self, input_pos: Optional[torch.Tensor]) -> Optional[torch.Tensor]: """ Creates an attention mask for the transformer layers. Args: input_pos[torch.Tensor]: The position of input sequence (used for inference only). Returns: Optional[torch.Tensor]: The attention mask, or None for causal mask. """ assert input_pos is not None, "input_pos must be provided for inference" mask = self.causal_mask[input_pos] return mask def _prepare_layer_kwargs( self, input_pos: Optional[torch.Tensor], mask: Optional[torch.Tensor], context: Optional[torch.Tensor], context_mask: Optional[torch.Tensor], ) -> Dict[str, Any]: """ Prepares the keyword arguments for transformer layers. Args: input_pos (Optional[torch.Tensor]): The position of the current sequence. mask (Optional[torch.Tensor]): The attention mask. context (Optional[torch.Tensor]): The context tensor added via cross-attn. context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor. Returns: Dict[str, Any]: A dictionary of keyword arguments for the transformer layers. """ if context is not None: context = context.to(self.precision) if isinstance(mask, torch.Tensor) and mask.ndim == 2: mask = mask[None, None, :, :] if isinstance(context_mask, torch.Tensor) and context_mask.ndim == 2: context_mask = context_mask[None, None, :, :] layer_kwargs = { "mask": mask, "context": context, "context_mask": context_mask, } layer_kwargs["input_pos"] = input_pos layer_kwargs["rope"] = self.rope return layer_kwargs def apply_abs_pos_emb(self, x: torch.Tensor, input_pos: int = None) -> torch.Tensor: """ Applies the absolute position embeddings to the input tensor. """ abs_pos_emb = self.abs_pos_emb abs_pos_emb = abs_pos_emb[:, input_pos, :] if input_pos is not None else abs_pos_emb return x + abs_pos_emb @torch.no_grad() def expand_vocab( self, new_vocab_size: int, init_method: str = "gaussian", multiple_of=64, expand_output_layer=True ): """ Expands the vocabulary of the model to the new size. Args: new_vocab_size (int): The new vocabulary size. init_method (str): The initialization method for new embeddings. Can be "zero" or "gaussian". Default is "gaussian". multiple_of (int): The new vocabulary size must be a multiple of this value. Defaults to 64 to fully leverage the power of NVIDIA TensorCore (source 1: https://x.com/karpathy/status/1621578354024677377, source 2: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc) expand_output_layer (bool): Whether to also expand the output layer. Defaults to True. Returns: None """ if new_vocab_size <= self.vocab_size: raise ValueError( f"New vocabulary size ({new_vocab_size}) must be " f"larger than current size ({self.vocab_size})" ) if new_vocab_size % multiple_of != 0: log.debug(f"New vocabulary size must be a multiple of {multiple_of}. Obtained {new_vocab_size}.") new_vocab_size = (new_vocab_size // multiple_of + 1) * multiple_of log.debug(f"Rounded vocabulary size to {new_vocab_size}.") # Resize token embeddings old_embeddings = self.tok_embeddings tensor_kwargs = {"device": old_embeddings.weight.device, "dtype": old_embeddings.weight.dtype} self.tok_embeddings = self._create_token_embeddings(vocab_size=new_vocab_size).to(**tensor_kwargs) # Initialize new embeddings if init_method not in ["zero", "gaussian"]: raise ValueError(f"Unknown initialization method: {init_method}") # The default initialization of nn.Embedding is Gaussian, so we don't need to do anything # if init_method == "gaussian". Only if init_method == "zero", we need to zero out the new embeddings. if init_method == "zero": self.tok_embeddings.weight.data[self.vocab_size :].zero_() # Copy old embeddings log.debug( f"old_embeddings: {old_embeddings.weight.data.shape}, new_embeddings: {self.tok_embeddings.weight.data.shape}, vocab_size: {self.vocab_size}" ) self.tok_embeddings.weight.data[: self.vocab_size] = old_embeddings.weight.data # Resize output layer old_output = self.output self.output = self._create_output_projection(vocab_size=new_vocab_size if expand_output_layer else None) # Initialize new output weights self.output.weight.data[self.vocab_size :].zero_() # Copy old output weights self.output.weight.data[: self.vocab_size] = old_output.weight.data # Update vocab size self.vocab_size = new_vocab_size log.debug(f"Expanded vocabulary size to {new_vocab_size}") def state_dict(self, *args, **kwargs): """ Process the state dict (e.g., remove "_extra_state" keys imposed by TransformerEngine for FP8). """ state_dict = super().state_dict(*args, **kwargs) return process_state_dict(state_dict) def load_state_dict(self, state_dict: Dict[str, Any], strict: bool = True, assign: bool = False): """ Ignore the missing keys with substrings matching `substring_to_ignore` (e.g., "_extra_state" keys imposed by TransformerEngine for FP8). """ state_dict = process_state_dict(state_dict) missing_keys, unexpected_keys = super().load_state_dict(state_dict, strict=False, assign=assign) if strict: actual_missing_keys = [] for key in missing_keys: if not any(substring in key for substring in substrings_to_ignore): actual_missing_keys.append(key) if len(actual_missing_keys) > 0 or len(unexpected_keys) > 0: raise ValueError(f"Missing keys: {actual_missing_keys}\n\nUnexpected keys: {unexpected_keys}") missing_keys = actual_missing_keys return _IncompatibleKeys(missing_keys, unexpected_keys)