File size: 2,739 Bytes
b9459fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b34fe72
 
b9459fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: apache-2.0
language:
- en
library_name: transformers
pipeline_tag: text-generation
---

# BabyMistral Model Card

## Model Overview

**BabyMistral** is a compact yet powerful language model designed for efficient text generation tasks. Built on the Mistral architecture, this model offers impressive performance despite its relatively small size.

### Key Specifications

- **Parameters:** 1.5 billion
- **Training Data:** 1.5 trillion tokens
- **Architecture:** Based on Mistral
- **Training Duration:** 70 days
- **Hardware:** 4x NVIDIA A100 GPUs

## Model Details

### Architecture

BabyMistral utilizes the Mistral AI architecture, which is known for its efficiency and performance. The model scales this architecture to 1.5 billion parameters, striking a balance between capability and computational efficiency.

### Training
- **Dataset Size:** 1.5 trillion tokens
- **Training Approach:** Trained from scratch
- **Hardware:** 4x NVIDIA A100 GPUs
- **Duration:** 70 days of continuous training

### Capabilities

BabyMistral is designed for a wide range of natural language processing tasks, including:

- Text completion and generation
- Creative writing assistance
- Dialogue systems
- Question answering
- Language understanding tasks

## Usage

### Getting Started

To use BabyMistral with the Hugging Face Transformers library:

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("OEvortex/BabyMistral")
tokenizer = AutoTokenizer.from_pretrained("OEvortex/BabyMistral")

# Define the chat input
chat = [
#     { "role": "system", "content": "You are BabyMistral" },
    { "role": "user", "content": "Hey there! How are you? ๐Ÿ˜Š" }
]

inputs = tokenizer.apply_chat_template(
    chat,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)


# Generate text
outputs = model.generate(
    inputs,
    max_new_tokens=256,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
    eos_token_id=tokenizer.eos_token_id,

    
)

response = outputs[0][inputs.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))

#I am doing well! How can I assist you today? ๐Ÿ˜Š

```

### Ethical Considerations

While BabyMistral is a powerful tool, users should be aware of its limitations and potential biases:

- The model may reproduce biases present in its training data
- It should not be used as a sole source of factual information
- Generated content should be reviewed for accuracy and appropriateness


### Limitations

- May struggle with very specialized or technical domains
- Lacks real-time knowledge beyond its training data
- Potential for generating plausible-sounding but incorrect information