File size: 11,665 Bytes
983f690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# coding=utf-8
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn

from transformers import PreTrainedModel
from transformers.modeling_outputs import ModelOutput

from modeling_phi import PhiForCausalLM
from configuration_llava import LlavaConfig
from open_clip import create_model


@dataclass
class LlavaCausalLMOutputWithPast(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    image_features: Optional[torch.FloatTensor] = None


class LlavaMultiModalProjector(nn.Module):
    def __init__(self, config: LlavaConfig):
        super().__init__()

        self.linear_1 = nn.Linear(
            config.vision_embed_dim,
            config.text_config.n_embd * config.projector_tokens_num,
            bias=True,
        )
        self.act = nn.GELU()
        self.linear_2 = nn.Linear(
            config.text_config.n_embd * 5,
            config.text_config.n_embd,
            bias=True,
        )
        self.projector_tokens_num = config.projector_tokens_num

    def forward(self, image_features):
        hidden_states = self.linear_1(image_features)
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        return hidden_states


class LlavaPreTrainedModel(PreTrainedModel):
    config_class = LlavaConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["LlavaVisionAttention"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True

    def __init__(self, config):
        super().__init__(config)

    def _init_weights(self, module):
        return

    @property
    def _supports_sdpa(self):
        """
        Retrieve language_model's attribute to check whether the model supports
        SDPA or not.
        """
        return self.language_model._supports_sdpa


class LlavaForConditionalGeneration(LlavaPreTrainedModel):
    def __init__(self, config: LlavaConfig):
        super().__init__(config)
        clip_model = create_model(config.vision_tower_name)
        self.vision_model = clip_model.visual

        self.multi_modal_projector = LlavaMultiModalProjector(config)
        self.vocab_size = config.vocab_size
        self.language_model = PhiForCausalLM(config.text_config)
        self.pad_token_id = (
            self.config.pad_token_id if self.config.pad_token_id is not None else -1
        )
        self.post_init()

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    def set_decoder(self, decoder):
        self.language_model.transformer = decoder

    def get_decoder(self):
        return self.language_model.transformer

    def tie_weights(self):
        return self.language_model.tie_weights()

    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None
    ) -> nn.Embedding:
        model_embeds = self.language_model.resize_token_embeddings(
            new_num_tokens, pad_to_multiple_of
        )
        # update vocab size
        self.config.text_config.vocab_size = model_embeds.num_embeddings
        self.config.vocab_size = model_embeds.num_embeddings
        self.vocab_size = model_embeds.num_embeddings
        return model_embeds

    def _merge_input_ids_with_image_features(
        self, image_features, inputs_embeds, input_ids, attention_mask, position_ids
    ):
        num_images, num_image_patches, embed_dim = image_features.shape
        batch_size, sequence_length = input_ids.shape
        left_padding = not torch.sum(
            input_ids[:, -1] == torch.tensor(self.pad_token_id)
        )
        # 1. Create a mask to know where special image tokens are
        special_image_token_mask = input_ids == self.config.image_token_index
        num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
        # Compute the maximum embed dimension
        max_embed_dim = (
            num_special_image_tokens.max() * (num_image_patches - 1)
        ) + sequence_length
        batch_indices, non_image_indices = torch.where(
            input_ids != self.config.image_token_index
        )

        # 2. Compute the positions where text should be written
        # Calculate new positions for text tokens in merged image-text sequence.
        # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
        # `torch.cumsum` computes how each image token shifts subsequent text token positions.
        # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
        new_token_positions = (
            torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1)
            - 1
        )
        nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
        if left_padding:
            new_token_positions += nb_image_pad[:, None]  # offset for left padding
        text_to_overwrite = new_token_positions[batch_indices, non_image_indices]

        # 3. Create the full embedding, already padded to the maximum position
        final_embedding = torch.zeros(
            batch_size,
            max_embed_dim,
            embed_dim,
            dtype=inputs_embeds.dtype,
            device=inputs_embeds.device,
        )
        final_attention_mask = torch.zeros(
            batch_size,
            max_embed_dim,
            dtype=attention_mask.dtype,
            device=inputs_embeds.device,
        )
        # In case the Vision model or the Language model has been offloaded to CPU, we need to manually
        # set the corresponding tensors into their correct target device.
        target_device = inputs_embeds.device
        batch_indices, non_image_indices, text_to_overwrite = (
            batch_indices.to(target_device),
            non_image_indices.to(target_device),
            text_to_overwrite.to(target_device),
        )
        attention_mask = attention_mask.to(target_device)

        # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
        # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
        final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[
            batch_indices, non_image_indices
        ]
        final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[
            batch_indices, non_image_indices
        ]

        # 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling
        image_to_overwrite = torch.all(final_embedding == 0, dim=-1)
        image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[
            :, None
        ].to(target_device)

        if image_to_overwrite.sum() != image_features.shape[:-1].numel():
            raise ValueError(
                f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
                f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
            )

        final_embedding[image_to_overwrite] = (
            image_features.contiguous().reshape(-1, embed_dim).to(target_device)
        )
        final_attention_mask |= image_to_overwrite
        position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_(
            (final_attention_mask == 0), 1
        )
        return final_embedding, final_attention_mask, position_ids

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        image_features: torch.FloatTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if inputs_embeds is None:
            inputs_embeds = self.get_input_embeddings()(input_ids)
            if image_features is not None and input_ids.shape[1] != 1:
                (
                    inputs_embeds,
                    attention_mask,
                    position_ids,
                ) = self._merge_input_ids_with_image_features(
                    image_features,
                    inputs_embeds,
                    input_ids,
                    attention_mask,
                    position_ids,
                )

        outputs = self.language_model(
            input_ids=None,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = outputs[0]


        if not return_dict:
            output = (logits,) + outputs[1:]
            return output

        return LlavaCausalLMOutputWithPast(
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_features=image_features,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        inputs_embeds=None,
        attention_mask=None,
        image_features=None,
        **kwargs,
    ):
        res = self.language_model.prepare_inputs_for_generation(input_ids, past_key_values, attention_mask, **kwargs)
        input_ids = res["input_ids"]
        past_key_values = res["past_key_values"]
        attention_mask = res["attention_mask"]

        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "image_features": image_features,
            }
        )
        return model_inputs

    def _reorder_cache(self, *args, **kwargs):
        return self.language_model._reorder_cache(*args, **kwargs)