|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Processor class for Llava. |
|
""" |
|
|
|
|
|
from typing import List, Optional, Union |
|
|
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers.image_utils import ImageInput |
|
from transformers.tokenization_utils_base import ( |
|
PaddingStrategy, |
|
PreTokenizedInput, |
|
TextInput, |
|
TruncationStrategy, |
|
) |
|
from transformers.utils import TensorType |
|
import torch |
|
from open_clip.transform import PreprocessCfg, image_transform_v2 |
|
from modeling_llava import LlavaForConditionalGeneration |
|
from PIL import Image |
|
import math |
|
|
|
|
|
class OpenCLIPImageProcessor: |
|
def __init__(self, config, crop_size=384, max_tokens=100): |
|
cfg = PreprocessCfg(**config) |
|
transform = image_transform_v2(cfg=cfg, is_train=False) |
|
self.transform = transform |
|
self.crop_size = crop_size |
|
self.max_tokens = max_tokens |
|
|
|
def __call__(self, image: Image.Image): |
|
output = self.transform_func(image) |
|
return { |
|
"pixel_values": output, |
|
} |
|
|
|
def transform_func(self, image: Image.Image): |
|
outputs = [] |
|
outputs.append(self.transform(image)) |
|
width, height = image.size |
|
crop_size = self.crop_size |
|
if width <= crop_size and height <= crop_size: |
|
outputs = torch.stack(outputs, dim=0) |
|
return outputs |
|
total_tokens = math.inf |
|
while total_tokens > self.max_tokens: |
|
total_tokens = math.floor( |
|
(2 * width - crop_size) |
|
/ crop_size |
|
* (2 * height - crop_size) |
|
/ crop_size |
|
) |
|
if total_tokens > self.max_tokens: |
|
crop_size += 10 |
|
stride = crop_size // 2 |
|
x_steps = int(round((2 * width - crop_size) / crop_size)) |
|
if x_steps < 1: |
|
x_steps = 1 |
|
y_steps = int(round((2 * height - crop_size) / crop_size)) |
|
if y_steps < 1: |
|
y_steps = 1 |
|
x_coords = [] |
|
y_coords = [] |
|
for i in range(x_steps): |
|
x_coords.append([i * stride, i * stride + crop_size]) |
|
if x_coords[-1][1] != width: |
|
x_coords[-1][1] = width |
|
for i in range(y_steps): |
|
y_coords.append([i * stride, i * stride + crop_size]) |
|
if y_coords[-1][1] != height: |
|
y_coords[-1][1] = height |
|
image_parts = [] |
|
for i in range(len(x_coords)): |
|
for j in range(len(y_coords)): |
|
image_parts.append( |
|
image.crop( |
|
(x_coords[i][0], y_coords[j][0], x_coords[i][1], y_coords[j][1]) |
|
) |
|
) |
|
for image_part in image_parts: |
|
outputs.append(self.transform(image_part)) |
|
outputs = torch.stack(outputs, dim=0) |
|
return outputs |
|
|
|
@property |
|
def model_input_names(self): |
|
return ["pixel_values"] |
|
|
|
|
|
class LlavaProcessor: |
|
def __init__(self, image_processor: OpenCLIPImageProcessor, tokenizer): |
|
self.image_processor = image_processor |
|
self.tokenizer = tokenizer |
|
|
|
def __call__( |
|
self, |
|
text: Union[ |
|
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput] |
|
] = None, |
|
images: ImageInput = None, |
|
model: LlavaForConditionalGeneration = None, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length=None, |
|
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, |
|
) -> BatchFeature: |
|
if images is not None: |
|
pixel_values = self.image_processor(images)[ |
|
"pixel_values" |
|
] |
|
pixel_values = pixel_values.to(model.device).to(model.dtype) |
|
image_outputs = model.vision_model(pixel_values) |
|
image_features = model.multi_modal_projector(image_outputs) |
|
image_features = image_features.unsqueeze(0) |
|
else: |
|
image_features = None |
|
text_inputs = self.tokenizer( |
|
text, |
|
return_tensors=return_tensors, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
) |
|
|
|
return BatchFeature(data={**text_inputs, "image_features": image_features}) |
|
|
|
def batch_decode(self, *args, **kwargs): |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
def decode(self, *args, **kwargs): |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |
|
|