Update configuration_llava.py
Browse files- configuration_llava.py +104 -14
configuration_llava.py
CHANGED
@@ -1,18 +1,107 @@
|
|
1 |
-
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
class LlavaConfig(PretrainedConfig):
|
9 |
-
model_type = "
|
10 |
is_composition = False
|
11 |
|
12 |
def __init__(
|
13 |
self,
|
14 |
text_config=None,
|
15 |
-
|
16 |
ignore_index=-100,
|
17 |
image_token_index=50297,
|
18 |
projector_hidden_act="gelu",
|
@@ -26,16 +115,17 @@ class LlavaConfig(PretrainedConfig):
|
|
26 |
self.projector_tokens_num = projector_tokens_num
|
27 |
self.vocab_size = vocab_size
|
28 |
|
29 |
-
self.vision_tower_name = vision_tower_name
|
30 |
-
vision_config = get_model_config(vision_tower_name)
|
31 |
-
self.vision_embed_dim = vision_config["embed_dim"]
|
32 |
-
|
33 |
-
self.vocab_size = self.vocab_size
|
34 |
-
|
35 |
self.text_config = text_config
|
36 |
if isinstance(self.text_config, dict):
|
37 |
-
text_config["model_type"] =
|
|
|
|
|
38 |
self.text_config = PhiConfig(**text_config)
|
39 |
self.vocab_size = self.text_config.vocab_size
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
rom transformers.configuration_utils import PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
from transformers import SiglipVisionConfig
|
4 |
|
5 |
+
|
6 |
+
logger = logging.get_logger(__name__)
|
7 |
+
|
8 |
+
|
9 |
+
class PhiConfig(PretrainedConfig):
|
10 |
+
model_type = "phi"
|
11 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
vocab_size=51200,
|
16 |
+
hidden_size=2048,
|
17 |
+
intermediate_size=8192,
|
18 |
+
num_hidden_layers=24,
|
19 |
+
num_attention_heads=32,
|
20 |
+
num_key_value_heads=None,
|
21 |
+
resid_pdrop=0.0,
|
22 |
+
embd_pdrop=0.0,
|
23 |
+
attention_dropout=0.0,
|
24 |
+
hidden_act="gelu_new",
|
25 |
+
max_position_embeddings=2048,
|
26 |
+
initializer_range=0.02,
|
27 |
+
layer_norm_eps=1e-5,
|
28 |
+
use_cache=True,
|
29 |
+
tie_word_embeddings=False,
|
30 |
+
rope_theta=10000.0,
|
31 |
+
rope_scaling=None,
|
32 |
+
partial_rotary_factor=0.5,
|
33 |
+
qk_layernorm=False,
|
34 |
+
bos_token_id=1,
|
35 |
+
eos_token_id=2,
|
36 |
+
**kwargs,
|
37 |
+
):
|
38 |
+
self.vocab_size = vocab_size
|
39 |
+
self.hidden_size = hidden_size
|
40 |
+
self.intermediate_size = intermediate_size
|
41 |
+
self.num_hidden_layers = num_hidden_layers
|
42 |
+
self.num_attention_heads = num_attention_heads
|
43 |
+
|
44 |
+
if num_key_value_heads is None:
|
45 |
+
num_key_value_heads = num_attention_heads
|
46 |
+
|
47 |
+
self.num_key_value_heads = num_key_value_heads
|
48 |
+
self.resid_pdrop = resid_pdrop
|
49 |
+
self.embd_pdrop = embd_pdrop
|
50 |
+
self.attention_dropout = attention_dropout
|
51 |
+
self.hidden_act = hidden_act
|
52 |
+
self.max_position_embeddings = max_position_embeddings
|
53 |
+
self.initializer_range = initializer_range
|
54 |
+
self.layer_norm_eps = layer_norm_eps
|
55 |
+
self.use_cache = use_cache
|
56 |
+
self.rope_theta = rope_theta
|
57 |
+
self.rope_scaling = rope_scaling
|
58 |
+
self.partial_rotary_factor = partial_rotary_factor
|
59 |
+
self.qk_layernorm = qk_layernorm
|
60 |
+
self._rope_scaling_validation()
|
61 |
+
|
62 |
+
super().__init__(
|
63 |
+
bos_token_id=bos_token_id,
|
64 |
+
eos_token_id=eos_token_id,
|
65 |
+
tie_word_embeddings=tie_word_embeddings,
|
66 |
+
**kwargs,
|
67 |
+
)
|
68 |
+
|
69 |
+
def _rope_scaling_validation(self):
|
70 |
+
"""
|
71 |
+
Validate the `rope_scaling` configuration.
|
72 |
+
"""
|
73 |
+
if self.rope_scaling is None:
|
74 |
+
return
|
75 |
+
|
76 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
77 |
+
raise ValueError(
|
78 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
79 |
+
f"got {self.rope_scaling}"
|
80 |
+
)
|
81 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
82 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
83 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
84 |
+
raise ValueError(
|
85 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
86 |
+
)
|
87 |
+
if (
|
88 |
+
rope_scaling_factor is None
|
89 |
+
or not isinstance(rope_scaling_factor, float)
|
90 |
+
or rope_scaling_factor <= 1.0
|
91 |
+
):
|
92 |
+
raise ValueError(
|
93 |
+
f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}"
|
94 |
+
)
|
95 |
|
96 |
|
97 |
class LlavaConfig(PretrainedConfig):
|
98 |
+
model_type = "HelpingAI-V"
|
99 |
is_composition = False
|
100 |
|
101 |
def __init__(
|
102 |
self,
|
103 |
text_config=None,
|
104 |
+
vision_config=None,
|
105 |
ignore_index=-100,
|
106 |
image_token_index=50297,
|
107 |
projector_hidden_act="gelu",
|
|
|
115 |
self.projector_tokens_num = projector_tokens_num
|
116 |
self.vocab_size = vocab_size
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
self.text_config = text_config
|
119 |
if isinstance(self.text_config, dict):
|
120 |
+
text_config["model_type"] = (
|
121 |
+
text_config["model_type"] if "model_type" in text_config else "phi"
|
122 |
+
)
|
123 |
self.text_config = PhiConfig(**text_config)
|
124 |
self.vocab_size = self.text_config.vocab_size
|
125 |
|
126 |
+
self.vision_config = vision_config
|
127 |
+
if isinstance(self.vision_config, dict):
|
128 |
+
self.vision_config = SiglipVisionConfig(**vision_config)
|
129 |
+
self.vision_embed_dim = self.vision_config.hidden_size
|
130 |
+
|
131 |
+
super().__init__(**kwargs)
|