Update processing_llava.py
Browse files- processing_llava.py +97 -47
processing_llava.py
CHANGED
@@ -13,12 +13,16 @@
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
"""
|
16 |
-
Processor class for
|
17 |
"""
|
18 |
|
19 |
|
|
|
20 |
from typing import List, Optional, Union
|
21 |
|
|
|
|
|
|
|
22 |
from transformers.feature_extraction_utils import BatchFeature
|
23 |
from transformers.image_utils import ImageInput
|
24 |
from transformers.tokenization_utils_base import (
|
@@ -28,52 +32,73 @@ from transformers.tokenization_utils_base import (
|
|
28 |
TruncationStrategy,
|
29 |
)
|
30 |
from transformers.utils import TensorType
|
31 |
-
import torch
|
32 |
-
from open_clip.transform import PreprocessCfg, image_transform_v2
|
33 |
-
from modeling_llava import LlavaForConditionalGeneration
|
34 |
-
from PIL import Image
|
35 |
-
import math
|
36 |
|
37 |
|
38 |
-
class
|
39 |
-
def __init__(self,
|
40 |
-
|
41 |
-
|
42 |
-
self.
|
43 |
-
self.
|
44 |
-
self.max_tokens = max_tokens
|
45 |
|
46 |
-
def __call__(
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
def
|
|
|
|
|
|
|
|
|
53 |
outputs = []
|
54 |
-
|
|
|
|
|
55 |
width, height = image.size
|
56 |
crop_size = self.crop_size
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
total_tokens = math.inf
|
61 |
-
while total_tokens >
|
62 |
-
total_tokens =
|
63 |
-
(
|
64 |
-
|
65 |
-
|
66 |
-
/ crop_size
|
67 |
)
|
68 |
-
if total_tokens >
|
69 |
crop_size += 10
|
70 |
-
|
71 |
-
|
|
|
72 |
if x_steps < 1:
|
73 |
x_steps = 1
|
74 |
-
y_steps = int(
|
75 |
if y_steps < 1:
|
76 |
y_steps = 1
|
|
|
|
|
|
|
|
|
77 |
x_coords = []
|
78 |
y_coords = []
|
79 |
for i in range(x_steps):
|
@@ -85,6 +110,7 @@ class OpenCLIPImageProcessor:
|
|
85 |
if y_coords[-1][1] != height:
|
86 |
y_coords[-1][1] = height
|
87 |
image_parts = []
|
|
|
88 |
for i in range(len(x_coords)):
|
89 |
for j in range(len(y_coords)):
|
90 |
image_parts.append(
|
@@ -92,20 +118,38 @@ class OpenCLIPImageProcessor:
|
|
92 |
(x_coords[i][0], y_coords[j][0], x_coords[i][1], y_coords[j][1])
|
93 |
)
|
94 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
for image_part in image_parts:
|
96 |
-
outputs.append(self.
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
99 |
|
100 |
-
@property
|
101 |
-
def model_input_names(self):
|
102 |
-
return ["pixel_values"]
|
103 |
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
def __init__(self, image_processor: OpenCLIPImageProcessor, tokenizer):
|
107 |
self.image_processor = image_processor
|
108 |
self.tokenizer = tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
def __call__(
|
111 |
self,
|
@@ -113,20 +157,24 @@ class LlavaProcessor:
|
|
113 |
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
|
114 |
] = None,
|
115 |
images: ImageInput = None,
|
116 |
-
model
|
|
|
|
|
117 |
padding: Union[bool, str, PaddingStrategy] = False,
|
118 |
truncation: Union[bool, str, TruncationStrategy] = None,
|
119 |
max_length=None,
|
120 |
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
121 |
) -> BatchFeature:
|
122 |
if images is not None:
|
123 |
-
|
124 |
-
|
|
|
|
|
125 |
]
|
126 |
-
|
127 |
-
|
|
|
128 |
image_features = model.multi_modal_projector(image_outputs)
|
129 |
-
image_features = image_features.unsqueeze(0)
|
130 |
else:
|
131 |
image_features = None
|
132 |
text_inputs = self.tokenizer(
|
@@ -136,7 +184,8 @@ class LlavaProcessor:
|
|
136 |
truncation=truncation,
|
137 |
max_length=max_length,
|
138 |
)
|
139 |
-
|
|
|
140 |
return BatchFeature(data={**text_inputs, "image_features": image_features})
|
141 |
|
142 |
def batch_decode(self, *args, **kwargs):
|
@@ -150,3 +199,4 @@ class LlavaProcessor:
|
|
150 |
tokenizer_input_names = self.tokenizer.model_input_names
|
151 |
image_processor_input_names = self.image_processor.model_input_names
|
152 |
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
|
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
"""
|
16 |
+
Processor class for HelpingAI-V.
|
17 |
"""
|
18 |
|
19 |
|
20 |
+
import math
|
21 |
from typing import List, Optional, Union
|
22 |
|
23 |
+
import torch
|
24 |
+
from PIL import Image
|
25 |
+
from transformers import ImageProcessingMixin, ProcessorMixin, SiglipImageProcessor, AutoTokenizer, AutoImageProcessor
|
26 |
from transformers.feature_extraction_utils import BatchFeature
|
27 |
from transformers.image_utils import ImageInput
|
28 |
from transformers.tokenization_utils_base import (
|
|
|
32 |
TruncationStrategy,
|
33 |
)
|
34 |
from transformers.utils import TensorType
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
+
class MultiCropImageProcessor(ImageProcessingMixin):
|
38 |
+
def __init__(self, model_name, max_crops=0, **kwargs):
|
39 |
+
self.processor = SiglipImageProcessor.from_pretrained(model_name)
|
40 |
+
self.crop_size = 384
|
41 |
+
self.max_crops = max_crops
|
42 |
+
self.stride_ratio = 2
|
|
|
43 |
|
44 |
+
def __call__(
|
45 |
+
self,
|
46 |
+
images: List[Image.Image],
|
47 |
+
max_crops: int = -1,
|
48 |
+
):
|
49 |
+
res = {
|
50 |
+
"pixel_values": [],
|
51 |
+
"coords": [],
|
52 |
}
|
53 |
+
if max_crops < 0:
|
54 |
+
max_crops = self.max_crops
|
55 |
+
for image in images:
|
56 |
+
outputs, output_coords = self.process_image(image, max_crops)
|
57 |
+
res["pixel_values"].append(outputs)
|
58 |
+
res["coords"].append(output_coords)
|
59 |
+
return res
|
60 |
|
61 |
+
def process_image(
|
62 |
+
self,
|
63 |
+
image: Image.Image,
|
64 |
+
max_crops: int
|
65 |
+
):
|
66 |
outputs = []
|
67 |
+
output_coords = []
|
68 |
+
outputs.append(self.processor(image, return_tensors="pt").pixel_values)
|
69 |
+
output_coords.append(torch.tensor([0.5, 0.5]))
|
70 |
width, height = image.size
|
71 |
crop_size = self.crop_size
|
72 |
+
stride = crop_size // self.stride_ratio
|
73 |
+
if (
|
74 |
+
max_crops == 0
|
75 |
+
or width <= (crop_size + stride)
|
76 |
+
and height <= (crop_size + stride)
|
77 |
+
):
|
78 |
+
outputs = torch.cat(outputs, dim=0)
|
79 |
+
output_coords = torch.cat(output_coords, dim=0)
|
80 |
+
return outputs, output_coords
|
81 |
total_tokens = math.inf
|
82 |
+
while total_tokens > max_crops:
|
83 |
+
total_tokens = (
|
84 |
+
math.floor((width - crop_size) / stride) + 1
|
85 |
+
) * (
|
86 |
+
math.floor((height - crop_size) / stride) + 1
|
|
|
87 |
)
|
88 |
+
if total_tokens > max_crops:
|
89 |
crop_size += 10
|
90 |
+
stride = crop_size // self.stride_ratio
|
91 |
+
stride = crop_size // self.stride_ratio
|
92 |
+
x_steps = int(math.floor((width - crop_size) / stride) + 1)
|
93 |
if x_steps < 1:
|
94 |
x_steps = 1
|
95 |
+
y_steps = int(math.floor((height - crop_size) / stride) + 1)
|
96 |
if y_steps < 1:
|
97 |
y_steps = 1
|
98 |
+
if x_steps == 1 and y_steps == 1:
|
99 |
+
outputs = torch.cat(outputs, dim=0)
|
100 |
+
output_coords = torch.cat(output_coords, dim=0)
|
101 |
+
return outputs, output_coords
|
102 |
x_coords = []
|
103 |
y_coords = []
|
104 |
for i in range(x_steps):
|
|
|
110 |
if y_coords[-1][1] != height:
|
111 |
y_coords[-1][1] = height
|
112 |
image_parts = []
|
113 |
+
part_coords = []
|
114 |
for i in range(len(x_coords)):
|
115 |
for j in range(len(y_coords)):
|
116 |
image_parts.append(
|
|
|
118 |
(x_coords[i][0], y_coords[j][0], x_coords[i][1], y_coords[j][1])
|
119 |
)
|
120 |
)
|
121 |
+
part_coords.append(
|
122 |
+
torch.tensor(
|
123 |
+
[
|
124 |
+
(x_coords[i][0] + x_coords[i][1]) / 2 / width,
|
125 |
+
(y_coords[j][0] + y_coords[j][1]) / 2 / height,
|
126 |
+
]
|
127 |
+
)
|
128 |
+
)
|
129 |
for image_part in image_parts:
|
130 |
+
outputs.append(self.processor(image_part, return_tensors="pt").pixel_values)
|
131 |
+
for part_coord in part_coords:
|
132 |
+
output_coords.append(part_coord)
|
133 |
+
outputs = torch.cat(outputs, dim=0)
|
134 |
+
output_coords = torch.stack(output_coords, dim=0)
|
135 |
+
return outputs, output_coords
|
136 |
|
|
|
|
|
|
|
137 |
|
138 |
+
class LlavaProcessor(ProcessorMixin):
|
139 |
+
attributes = ["image_processor", "tokenizer"]
|
140 |
+
image_processor_class = MultiCropImageProcessor
|
141 |
+
tokenizer_class = "SiglipTokenizer"
|
142 |
|
143 |
+
def __init__(self, image_processor: MultiCropImageProcessor, tokenizer):
|
|
|
144 |
self.image_processor = image_processor
|
145 |
self.tokenizer = tokenizer
|
146 |
+
self.search_model = None
|
147 |
+
|
148 |
+
@classmethod
|
149 |
+
def from_pretrained(cls, path, trust_remote_code=True, **kwargs):
|
150 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=trust_remote_code)
|
151 |
+
image_processor = MultiCropImageProcessor(path, trust_remote_code=trust_remote_code)
|
152 |
+
return LlavaProcessor(image_processor, tokenizer)
|
153 |
|
154 |
def __call__(
|
155 |
self,
|
|
|
157 |
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
|
158 |
] = None,
|
159 |
images: ImageInput = None,
|
160 |
+
model = None,
|
161 |
+
max_crops: int = 0,
|
162 |
+
num_tokens = None,
|
163 |
padding: Union[bool, str, PaddingStrategy] = False,
|
164 |
truncation: Union[bool, str, TruncationStrategy] = None,
|
165 |
max_length=None,
|
166 |
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
167 |
) -> BatchFeature:
|
168 |
if images is not None:
|
169 |
+
processor_outputs = self.image_processor(images, max_crops)
|
170 |
+
pixel_values = processor_outputs["pixel_values"]
|
171 |
+
pixel_values = [
|
172 |
+
value.to(model.device).to(model.dtype) for value in pixel_values
|
173 |
]
|
174 |
+
coords = processor_outputs["coords"]
|
175 |
+
coords = [value.to(model.device).to(model.dtype) for value in coords]
|
176 |
+
image_outputs = model.vision_model(pixel_values, coords, num_tokens)
|
177 |
image_features = model.multi_modal_projector(image_outputs)
|
|
|
178 |
else:
|
179 |
image_features = None
|
180 |
text_inputs = self.tokenizer(
|
|
|
184 |
truncation=truncation,
|
185 |
max_length=max_length,
|
186 |
)
|
187 |
+
text_inputs['input_ids'] = text_inputs['input_ids'].to(model.device)
|
188 |
+
text_inputs['attention_mask'] = text_inputs['attention_mask'].to(model.device)
|
189 |
return BatchFeature(data={**text_inputs, "image_features": image_features})
|
190 |
|
191 |
def batch_decode(self, *args, **kwargs):
|
|
|
199 |
tokenizer_input_names = self.tokenizer.model_input_names
|
200 |
image_processor_input_names = self.image_processor.model_input_names
|
201 |
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
202 |
+
|