--- license: apache-2.0 --- # OFA-base ## Introduction This is the **base** version of OFA pretrained model. OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image generation, visual grounding, image captioning, image classification, text generation, etc.) to a simple sequence-to-sequence learning framework. The directory includes 4 files, namely `config.json` which consists of model configuration, `vocab.json` and `merge.txt` for our OFA tokenizer, and lastly `pytorch_model.bin` which consists of model weights. There is no need to worry about the mismatch between Fairseq and transformers, since we have addressed the issue yet. ## How to use To use it in transformers, please refer to https://github.com/OFA-Sys/OFA/tree/feature/add_transformers. Install the transformers and download the models as shown below. ``` git clone --single-branch --branch feature/add_transformers https://github.com/OFA-Sys/OFA.git pip install OFA/transformers/ git clone https://huggingface.co/OFA-Sys/OFA-base ``` After, refer the path to OFA-base to `ckpt_dir`, and prepare an image for the testing example below. Also, ensure that you have pillow and torchvision in your environment. ```python >>> from PIL import Image >>> from torchvision import transforms >>> from transformers import OFATokenizer, OFAModel >>> from generate import sequence_generator >>> mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5] >>> resolution = 384 >>> patch_resize_transform = transforms.Compose([ lambda image: image.convert("RGB"), transforms.Resize((resolution, resolution), interpolation=Image.BICUBIC), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) >>> tokenizer = OFATokenizer.from_pretrained(ckpt_dir) >>> txt = " what does the image describe?" >>> inputs = tokenizer([txt], return_tensors="pt").input_ids >>> img = Image.open(path_to_image) >>> patch_img = patch_resize_transform(img).unsqueeze(0) >>> # using the generator of fairseq version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=True) >>> generator = sequence_generator.SequenceGenerator( tokenizer=tokenizer, beam_size=5, max_len_b=16, min_len=0, no_repeat_ngram_size=3, ) >>> data = {} >>> data["net_input"] = {"input_ids": inputs, 'patch_images': patch_img, 'patch_masks':torch.tensor([True])} >>> gen_output = generator.generate([model], data) >>> gen = [gen_output[i][0]["tokens"] for i in range(len(gen_output))] >>> # using the generator of huggingface version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=False) >>> gen = model.generate(inputs, patch_images=patch_img, num_beams=5, no_repeat_ngram_size=3) >>> print(tokenizer.batch_decode(gen, skip_special_tokens=True)) ```