cicdatopea commited on
Commit
a4f66b4
·
verified ·
1 Parent(s): 4202ccb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +119 -3
README.md CHANGED
@@ -1,3 +1,119 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ ## Model Details
5
+
6
+ This model is an int4 model(The vision module has also been quantized) with group_size 128 and symmetric quantization of [Xkev/Llama-3.2V-11B-cot](https://huggingface.co/Xkev/Llama-3.2V-11B-cot) generated by [intel/auto-round](https://github.com/intel/auto-round).
7
+
8
+ ## How To Use
9
+
10
+ ### Requirements
11
+ Please use Transformers version 4.45.0 or later
12
+ AutoRound version >= 0.4.1
13
+
14
+ ### INT4 Inference
15
+ ```python
16
+ from auto_round import AutoRoundConfig ## must import for auto-round format
17
+ import requests
18
+ import torch
19
+ from PIL import Image
20
+ from transformers import MllamaForConditionalGeneration, AutoProcessor
21
+
22
+ quantized_model_path="OPEA/Llama-3.2V-11B-cot-int4-sym-inc"
23
+
24
+ model = MllamaForConditionalGeneration.from_pretrained(
25
+ quantized_model_path,
26
+ torch_dtype="auto",
27
+ device_map="auto"
28
+ )
29
+ processor = AutoProcessor.from_pretrained(quantized_model_path)
30
+ image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"
31
+ content = "Please write a haiku for this one, it would be: "
32
+
33
+ messages = [
34
+ {"role": "user", "content": [
35
+ {"type": "image"},
36
+ {"type": "text", "text": content}
37
+ ]}
38
+ ]
39
+ # Preparation for inference
40
+ image = Image.open(requests.get(image_url, stream=True).raw)
41
+ input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
42
+ inputs = processor(
43
+ image,
44
+ input_text,
45
+ add_special_tokens=False,
46
+ return_tensors="pt"
47
+ ).to(model.device)
48
+
49
+ output = model.generate(**inputs, max_new_tokens=2048)
50
+ output = processor.decode(output[0])
51
+ pattern = re.compile('<CONCLUSION>(.*)</CONCLUSION>')
52
+ print(pattern.search(output).group(1))
53
+ ##INT4:
54
+ ## Blue coat brown vest
55
+ ## Stone cottage green hills
56
+ ## Peaceful rural scene
57
+
58
+ ##BF16:
59
+ ## Rabbit in blue coat
60
+ ## Brown vest and stone cottage
61
+ ## Peaceful countryside
62
+
63
+ image_url = "http://images.cocodataset.org/train2017/000000411975.jpg"
64
+ content = "How many people are on the baseball field in the picture?"
65
+ ##INT4:
66
+ ## There are four people on the baseball field in the picture.
67
+
68
+ ##BF16:
69
+ ## There are four people on the baseball field in the picture.
70
+
71
+ image_url = "https://intelcorp.scene7.com/is/image/intelcorp/processor-overview-framed-badge:1920-1080?wid=480&hei=270"
72
+ content = "Which company does this picture represent?"
73
+ ##INT4:
74
+ ## This picture represents Intel.
75
+
76
+ ##BF16:
77
+ ## Intel
78
+ ```
79
+
80
+ ### Generate the model
81
+ Here is the sample command to reproduce the model.
82
+ ```bash
83
+ pip install auto-round
84
+ auto-round-mllm \
85
+ --model Xkev/Llama-3.2V-11B-cot \
86
+ --device 0 \
87
+ --group_size 128 \
88
+ --bits 4 \
89
+ --iters 200 \
90
+ --nsample 128 \
91
+ --seqlen 512 \
92
+ --quant_nontext_module \
93
+ --format 'auto_round' \
94
+ --output_dir "./tmp_autoround"
95
+ ```
96
+
97
+ ## Ethical Considerations and Limitations
98
+
99
+ The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
100
+
101
+ Therefore, before deploying any applications of the model, developers should perform safety testing.
102
+
103
+ ## Caveats and Recommendations
104
+
105
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
106
+
107
+ Here are a couple of useful links to learn more about Intel's AI software:
108
+
109
+ - Intel Neural Compressor [link](https://github.com/intel/neural-compressor)
110
+
111
+ ## Disclaimer
112
+
113
+ The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.
114
+
115
+ ## Cite
116
+
117
+ @article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao and Liu, Yi}, journal={arXiv preprint arXiv:2309.05516}, year={2023} }
118
+
119
+ [arxiv](https://arxiv.org/abs/2309.05516) [github](https://github.com/intel/auto-round)