OPEA
/

Safetensors
llama
4-bit precision
intel/auto-round
Llama-3.3-70B-Instruct-int4-sym-inc / quantization_config.json
n1ck-guo's picture
init
177a72a
raw
history blame
578 Bytes
{
"bits": 4,
"group_size": 128,
"sym": true,
"data_type": "int",
"enable_quanted_input": true,
"enable_minmax_tuning": true,
"seqlen": 2048,
"batch_size": 8,
"scale_dtype": "torch.float16",
"lr": 0.001,
"minmax_lr": 0.001,
"gradient_accumulate_steps": 1,
"iters": 1000,
"amp": true,
"nsamples": 512,
"low_gpu_mem_usage": true,
"to_quant_block_names": null,
"enable_norm_bias_tuning": false,
"dataset": "NeelNanda/pile-10k",
"autoround_version": "0.4.2.dev",
"quant_method": "intel/auto-round",
"backend": "auto_round:gptq:exllamav2"
}