OPEA
/

Safetensors
llama
4-bit precision
intel/auto-round
Meta-Llama-3.1-70B-Instruct-int4-sym-inc / quantization_config.json
wenhuach's picture
update to autoround format
2252808
{
"bits": 4,
"group_size": 128,
"sym": true,
"data_type": "int",
"enable_quanted_input": true,
"enable_minmax_tuning": true,
"seqlen": 2048,
"batch_size": 8,
"scale_dtype": "torch.float16",
"lr": 0.001,
"minmax_lr": 0.001,
"gradient_accumulate_steps": 1,
"iters": 1000,
"amp": true,
"nsamples": 512,
"low_gpu_mem_usage": true,
"to_quant_block_names": [
[
"model.layers.0",
"model.layers.1",
"model.layers.2",
"model.layers.3",
"model.layers.4",
"model.layers.5",
"model.layers.6",
"model.layers.7",
"model.layers.8",
"model.layers.9",
"model.layers.10",
"model.layers.11",
"model.layers.12",
"model.layers.13",
"model.layers.14",
"model.layers.15",
"model.layers.16",
"model.layers.17",
"model.layers.18",
"model.layers.19",
"model.layers.20",
"model.layers.21",
"model.layers.22",
"model.layers.23",
"model.layers.24",
"model.layers.25",
"model.layers.26",
"model.layers.27",
"model.layers.28",
"model.layers.29",
"model.layers.30",
"model.layers.31",
"model.layers.32",
"model.layers.33",
"model.layers.34",
"model.layers.35",
"model.layers.36",
"model.layers.37",
"model.layers.38",
"model.layers.39",
"model.layers.40",
"model.layers.41",
"model.layers.42",
"model.layers.43",
"model.layers.44",
"model.layers.45",
"model.layers.46",
"model.layers.47",
"model.layers.48",
"model.layers.49",
"model.layers.50",
"model.layers.51",
"model.layers.52",
"model.layers.53",
"model.layers.54",
"model.layers.55",
"model.layers.56",
"model.layers.57",
"model.layers.58",
"model.layers.59",
"model.layers.60",
"model.layers.61",
"model.layers.62",
"model.layers.63",
"model.layers.64",
"model.layers.65",
"model.layers.66",
"model.layers.67",
"model.layers.68",
"model.layers.69",
"model.layers.70",
"model.layers.71",
"model.layers.72",
"model.layers.73",
"model.layers.74",
"model.layers.75",
"model.layers.76",
"model.layers.77",
"model.layers.78",
"model.layers.79"
]
],
"enable_norm_bias_tuning": false,
"dataset": "NeelNanda/pile-10k",
"autoround_version": "0.4.1",
"quant_method": "intel/auto-round",
"backend": "auto_round:gptq:exllamav2"
}