glm-4-9b-chat-int4-sym-inc / tokenization_chatglm.py
sys-lpot-val
add autogptq format
d1bb095
import regex as re
import base64
import os
import tiktoken
from typing import List, Optional, Union, Dict
from transformers import PreTrainedTokenizer
from transformers.utils import PaddingStrategy
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
class ChatGLM4Tokenizer(PreTrainedTokenizer):
vocab_files_names = {"vocab_file": "tokenizer.model"}
model_input_names = ["input_ids", "attention_mask", "position_ids"]
def __init__(
self,
vocab_file,
clean_up_tokenization_spaces=False,
**kwargs
):
self.name = "GLM4Tokenizer"
self.vocab_file = vocab_file
pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
self.pat_str = re.compile(pat_str)
mergeable_ranks = {}
with open(vocab_file) as f:
for line in f:
token, rank = line.strip().split()
rank = int(rank)
token = base64.b64decode(token)
mergeable_ranks[token] = rank
self.mergeable_ranks = mergeable_ranks
self.tokenizer = tiktoken.Encoding(
name="my_tokenizer",
pat_str=pat_str,
mergeable_ranks=mergeable_ranks,
special_tokens={}
)
self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
self.n_words = len(self.decoder)
super().__init__(
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs
)
@property
def vocab_size(self):
return self.n_words
def get_vocab(self):
""" Returns vocab as a dict """
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def convert_tokens_to_string(self, tokens: List[Union[bytes, str, int]]) -> str:
"""
Converts a sequence of tokens in a single string.
"""
text = ""
temp = b""
for t in tokens:
if isinstance(t, int):
t = chr(t)
if isinstance(t, str):
if temp:
text += temp.decode("utf-8", errors="replace")
elif isinstance(t, bytes):
temp += t
else:
raise TypeError("token should only be of type int, bytes or str")
if temp:
text += temp.decode("utf-8", errors="replace")
return text
def _tokenize(self, text, **kwargs):
tokens = []
ids = self.tokenizer.encode(text)
for t in ids:
tokens.append(self.decoder[t])
return tokens
def _convert_token_to_id(self, token):
""" Converts a token (str) in an id using the vocab. """
return self.mergeable_ranks[token]
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, "")
def save_vocabulary(self, save_directory, filename_prefix=None):
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
filename_prefix (`str`, *optional*):
An optional prefix to add to the named of the saved files.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, self.vocab_files_names["vocab_file"]
)
else:
vocab_file = save_directory
with open(self.vocab_file, 'rb') as fin:
proto_str = fin.read()
with open(vocab_file, "wb") as writer:
writer.write(proto_str)
return (vocab_file,)
def get_prefix_tokens(self):
prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
return prefix_tokens
def build_single_message(self, role, metadata, message, tokenize=True):
assert role in ["system", "user", "assistant", "observation"], role
if tokenize:
role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n",
disallowed_special=())
message_tokens = self.tokenizer.encode(message, disallowed_special=())
tokens = role_tokens + message_tokens
return tokens
else:
return str(f"<|{role}|>{metadata}\n{message}")
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
prefix_tokens = self.get_prefix_tokens()
token_ids_0 = prefix_tokens + token_ids_0
if token_ids_1 is not None:
token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("<eos>")]
return token_ids_0
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_side: str = "left",
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
Args:
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
# Load from model defaults
required_input = encoded_inputs[self.model_input_names[0]]
seq_length = len(required_input)
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(required_input)
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
# Initialize attention mask if not present.
if "attention_mask" not in encoded_inputs:
encoded_inputs["attention_mask"] = [1] * seq_length
if "position_ids" not in encoded_inputs:
encoded_inputs["position_ids"] = list(range(seq_length))
if needs_to_be_padded:
difference = max_length - len(required_input)
if "attention_mask" in encoded_inputs:
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
if "position_ids" in encoded_inputs:
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
return encoded_inputs