Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: transformers
|
4 |
+
base_model: OpenGVLab/InternVL2-4B
|
5 |
+
pipeline_tag: image-text-to-text
|
6 |
+
---
|
7 |
+
|
8 |
+
# OS-Atlas: A Foundation Action Model For Generalist GUI Agents
|
9 |
+
|
10 |
+
<div align="center">
|
11 |
+
|
12 |
+
[\[🏠Homepage\]](https://osatlas.github.io) [\[💻Code\]](https://github.com/OS-Copilot/OS-Atlas) [\[🚀Quick Start\]](#quick-start) [\[📝Paper\]](https://arxiv.org/abs/2410.23218) [\[🤗Models\]](https://huggingface.co/collections/OS-Copilot/os-atlas-67246e44003a1dfcc5d0d045) [\[🤗ScreenSpot-v2\]](https://huggingface.co/datasets/OS-Copilot/ScreenSpot-v2)
|
13 |
+
|
14 |
+
</div>
|
15 |
+
|
16 |
+
## Overview
|
17 |
+
![os-atlas](https://github.com/user-attachments/assets/cf2ee020-5e15-4087-9a7e-75cc43662494)
|
18 |
+
|
19 |
+
OS-Atlas provides a series of models specifically designed for GUI agents.
|
20 |
+
|
21 |
+
For GUI grounding tasks, you can use:
|
22 |
+
- [OS-Atlas-Base-7B](https://huggingface.co/OS-Copilot/OS-Atlas-Base-7B)
|
23 |
+
- [OS-Atlas-Base-4B](https://huggingface.co/OS-Copilot/OS-Atlas-Base-4B)
|
24 |
+
|
25 |
+
For generating single-step actions in GUI agent tasks, you can use:
|
26 |
+
- [OS-Atlas-Action-7B](https://huggingface.co/OS-Copilot/OS-Atlas-Action-7B)
|
27 |
+
- [OS-Atlas-Action-4B](https://huggingface.co/OS-Copilot/OS-Atlas-Action-4B)
|
28 |
+
|
29 |
+
## OS-Atlas-Action-4B
|
30 |
+
|
31 |
+
`OS-Atlas-Action-4B` is a GUI action model finetuned from OS-Atlas-Base-4B. By taking as input a system prompt, basic and custom actions, and a task instruction, the model generates thoughtful reasoning (`thought`) and executes the appropriate next step (`action`).
|
32 |
+
|
33 |
+
### Installation
|
34 |
+
To use `OS-Atlas-Action-4B`, first install the necessary dependencies:
|
35 |
+
```
|
36 |
+
pip install transformers
|
37 |
+
```
|
38 |
+
For additional dependencies, please refer to the [InternVL2 documentation](https://internvl.readthedocs.io/en/latest/get_started/installation.html)
|
39 |
+
|
40 |
+
### Example Inference Code
|
41 |
+
```python
|
42 |
+
import torch
|
43 |
+
import torchvision.transforms as T
|
44 |
+
from PIL import Image
|
45 |
+
from transformers import set_seed
|
46 |
+
from torchvision.transforms.functional import InterpolationMode
|
47 |
+
from transformers import AutoModel, AutoTokenizer
|
48 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
49 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
50 |
+
set_seed(1234)
|
51 |
+
|
52 |
+
def build_transform(input_size):
|
53 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
54 |
+
transform = T.Compose([
|
55 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
56 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
57 |
+
T.ToTensor(),
|
58 |
+
T.Normalize(mean=MEAN, std=STD)
|
59 |
+
])
|
60 |
+
return transform
|
61 |
+
|
62 |
+
|
63 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
64 |
+
best_ratio_diff = float('inf')
|
65 |
+
best_ratio = (1, 1)
|
66 |
+
area = width * height
|
67 |
+
for ratio in target_ratios:
|
68 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
69 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
70 |
+
if ratio_diff < best_ratio_diff:
|
71 |
+
best_ratio_diff = ratio_diff
|
72 |
+
best_ratio = ratio
|
73 |
+
elif ratio_diff == best_ratio_diff:
|
74 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
75 |
+
best_ratio = ratio
|
76 |
+
return best_ratio
|
77 |
+
|
78 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
79 |
+
orig_width, orig_height = image.size
|
80 |
+
aspect_ratio = orig_width / orig_height
|
81 |
+
|
82 |
+
# calculate the existing image aspect ratio
|
83 |
+
target_ratios = set(
|
84 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
85 |
+
i * j <= max_num and i * j >= min_num)
|
86 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
87 |
+
|
88 |
+
# find the closest aspect ratio to the target
|
89 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
90 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
91 |
+
|
92 |
+
# calculate the target width and height
|
93 |
+
target_width = image_size * target_aspect_ratio[0]
|
94 |
+
target_height = image_size * target_aspect_ratio[1]
|
95 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
96 |
+
|
97 |
+
# resize the image
|
98 |
+
resized_img = image.resize((target_width, target_height))
|
99 |
+
processed_images = []
|
100 |
+
for i in range(blocks):
|
101 |
+
box = (
|
102 |
+
(i % (target_width // image_size)) * image_size,
|
103 |
+
(i // (target_width // image_size)) * image_size,
|
104 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
105 |
+
((i // (target_width // image_size)) + 1) * image_size
|
106 |
+
)
|
107 |
+
# split the image
|
108 |
+
split_img = resized_img.crop(box)
|
109 |
+
processed_images.append(split_img)
|
110 |
+
assert len(processed_images) == blocks
|
111 |
+
if use_thumbnail and len(processed_images) != 1:
|
112 |
+
thumbnail_img = image.resize((image_size, image_size))
|
113 |
+
processed_images.append(thumbnail_img)
|
114 |
+
return processed_images
|
115 |
+
|
116 |
+
def load_image(image_file, input_size=448, max_num=6):
|
117 |
+
image = Image.open(image_file).convert('RGB')
|
118 |
+
transform = build_transform(input_size=input_size)
|
119 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
120 |
+
pixel_values = [transform(image) for image in images]
|
121 |
+
pixel_values = torch.stack(pixel_values)
|
122 |
+
return pixel_values
|
123 |
+
|
124 |
+
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
|
125 |
+
path = 'https://github.com/OS-Copilot/OS-Atlas/blob/main/exmaples/images/action_example_1.jpg'
|
126 |
+
model = AutoModel.from_pretrained(
|
127 |
+
path,
|
128 |
+
torch_dtype=torch.bfloat16,
|
129 |
+
low_cpu_mem_usage=True,
|
130 |
+
trust_remote_code=True).eval().cuda()
|
131 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
132 |
+
|
133 |
+
# set the max number of tiles in `max_num`
|
134 |
+
pixel_values = load_image('/nas/shared/NLP_A100/wuzhenyu/code/OS-Atlas/exmaples/images/action_example_1.jpg', max_num=6).to(torch.bfloat16).cuda()
|
135 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
136 |
+
|
137 |
+
sys_prompt = """
|
138 |
+
You are now operating in Executable Language Grounding mode. Your goal is to help users accomplish tasks by suggesting executable actions that best fit their needs. Your skill set includes both basic and custom actions:
|
139 |
+
|
140 |
+
1. Basic Actions
|
141 |
+
Basic actions are standardized and available across all platforms. They provide essential functionality and are defined with a specific format, ensuring consistency and reliability.
|
142 |
+
Basic Action 1: CLICK
|
143 |
+
- purpose: Click at the specified position.
|
144 |
+
- format: CLICK <point>[[x-axis, y-axis]]</point>
|
145 |
+
- example usage: CLICK <point>[[101, 872]]</point>
|
146 |
+
|
147 |
+
Basic Action 2: TYPE
|
148 |
+
- purpose: Enter specified text at the designated location.
|
149 |
+
- format: TYPE [input text]
|
150 |
+
- example usage: TYPE [Shanghai shopping mall]
|
151 |
+
|
152 |
+
Basic Action 3: SCROLL
|
153 |
+
- purpose: SCROLL in the specified direction.
|
154 |
+
- format: SCROLL [direction (UP/DOWN/LEFT/RIGHT)]
|
155 |
+
- example usage: SCROLL [UP]
|
156 |
+
|
157 |
+
2.Custom Actions
|
158 |
+
Custom actions are unique to each user's platform and environment. They allow for flexibility and adaptability, enabling the model to support new and unseen actions defined by users. These actions extend the functionality of the basic set, making the model more versatile and capable of handling specific tasks.
|
159 |
+
Custom Action 1: LONG_PRESS
|
160 |
+
- purpose: Long press at the specified position.
|
161 |
+
- format: LONG_PRESS <point>[[x-axis, y-axis]]</point>
|
162 |
+
- example usage: LONG_PRESS <point>[[101, 872]]</point>
|
163 |
+
|
164 |
+
Custom Action 2: OPEN_APP
|
165 |
+
- purpose: Open the specified application.
|
166 |
+
- format: OPEN_APP [app_name]
|
167 |
+
- example usage: OPEN_APP [Google Chrome]
|
168 |
+
|
169 |
+
Custom Action 3: PRESS_BACK
|
170 |
+
- purpose: Press a back button to navigate to the previous screen.
|
171 |
+
- format: PRESS_BACK
|
172 |
+
- example usage: PRESS_BACK
|
173 |
+
|
174 |
+
Custom Action 4: PRESS_HOME
|
175 |
+
- purpose: Press a home button to navigate to the home page.
|
176 |
+
- format: PRESS_HOME
|
177 |
+
- example usage: PRESS_HOME
|
178 |
+
|
179 |
+
Custom Action 5: PRESS_RECENT
|
180 |
+
- purpose: Press the recent button to view or switch between recently used applications.
|
181 |
+
- format: PRESS_RECENT
|
182 |
+
- example usage: PRESS_RECENT
|
183 |
+
|
184 |
+
Custom Action 6: ENTER
|
185 |
+
- purpose: Press the enter button.
|
186 |
+
- format: ENTER
|
187 |
+
- example usage: ENTER
|
188 |
+
|
189 |
+
Custom Action 7: WAIT
|
190 |
+
- purpose: Wait for the screen to load.
|
191 |
+
- format: WAIT
|
192 |
+
- example usage: WAIT
|
193 |
+
|
194 |
+
Custom Action 8: COMPLETE
|
195 |
+
- purpose: Indicate the task is finished.
|
196 |
+
- format: COMPLETE
|
197 |
+
- example usage: COMPLETE
|
198 |
+
|
199 |
+
|
200 |
+
In most cases, task instructions are high-level and abstract. Carefully read the instruction and action history, then perform reasoning to determine the most appropriate next action. Ensure you strictly generate two sections: Thoughts and Actions.
|
201 |
+
Thoughts: Clearly outline your reasoning process for current step.
|
202 |
+
Actions: Specify the actual actions you will take based on your reasoning. You should follow action format above when generating.
|
203 |
+
|
204 |
+
Your current task instruction, action history, and associated screenshot are as follows:
|
205 |
+
Screenshot:
|
206 |
+
<image>
|
207 |
+
Task instruction: {}
|
208 |
+
History: null
|
209 |
+
"""
|
210 |
+
|
211 |
+
question = sys_prompt.format("to allow the user to enter their first name")
|
212 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
213 |
+
print(f'Assistant:\n{response}')
|
214 |
+
|
215 |
+
# Assistant:
|
216 |
+
# thoughts:
|
217 |
+
# click on the first name field
|
218 |
+
# actions:
|
219 |
+
# CLICK [[362,527]]
|
220 |
+
```
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
## Citation
|
225 |
+
If you find this repository helpful, feel free to cite our paper:
|
226 |
+
```bibtex
|
227 |
+
@article{wu2024atlas,
|
228 |
+
title={OS-ATLAS: A Foundation Action Model for Generalist GUI Agents},
|
229 |
+
author={Wu, Zhiyong and Wu, Zhenyu and Xu, Fangzhi and Wang, Yian and Sun, Qiushi and Jia, Chengyou and Cheng, Kanzhi and Ding, Zichen and Chen, Liheng and Liang, Paul Pu and others},
|
230 |
+
journal={arXiv preprint arXiv:2410.23218},
|
231 |
+
year={2024}
|
232 |
+
}
|
233 |
+
```
|