Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 953.99 +/- 100.86
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f242a01cd65c19cd0c9d1d83d5ab78561c154b4609170f77d824a44febe30516
|
3 |
+
size 129195
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fdcea5d65f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdcea5d6680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdcea5d6710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdcea5d67a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fdcea5d6830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fdcea5d68c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdcea5d6950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fdcea5d69e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdcea5d6a70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdcea5d6b00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdcea5d6b90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fdcea62d180>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1668806741948614409,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAsSuFPeAKVj5eAgzACysCwCXKQr/xA0++Duxevilnrr7QSwK/cCArwFPRDj1Kndg/5eNSv/MZ3r8ROKo+BHNkvdRafb8bQay7mA7iPf8fTD+vH0g/XWGUv0D7GD8kgQc+ppzTPqxC9T6D8Bs/rgZKP3/Lc77t8o+845U8P0OUi75hjKE+sJa0PhPwIr/QUr6+fCcSP7Ko7L622ha/lPiJPrpS9z6d5+6+CRIdP+x1Qz7XX88+zyg7P/lVQb6atAO+cBYnP5bikb7BAyM/eWsiPqac0z6sQvU+g/AbP64GSj9M+r0+TVuXPY0ACMDk/8++60SGvz9qPr4LroY+wRZSvgcag7/8NFY/OGTaPo3/i76HHZA/1Bglve76AT//fty/k+6Gv/T2Dj2pB768so/4PHuwHD5EQIq+s3sEv6GBQLymnNM+25oFwIPwGz9lMqK/7XDSPumoZ7+BJIm/HggDvymXBcASBIU/GX6av3cUA79apCG/WTQ7vilb271IZbe/jieQPxf2Jb2Ohho/i/2lv9w0fL9znUDArhOnvqy7+77PgEm/ZvFFwLhcBb9JYSc8ppzTPtuaBcCD8Bs/ZTKiv5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAJgr6jYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDo89q9AAAAANaMAMAAAAAAVgL1PQAAAADwBvM/AAAAAN7H3T0AAAAAy1HnPwAAAADMuSE9AAAAAEXc3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABN9mQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGdbkvQAAAACCAOy/AAAAAAKoAD4AAAAAPPfgPwAAAABoaES9AAAAAIG56T8AAAAA7SBMPQAAAAC3Ktu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvis6NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA+TijoAAAAAzOgAwAAAAAAJ9OE9AAAAAD8y3z8AAAAA6jPuuwAAAADVDts/AAAAAHcnRLwAAAAAYfPuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALR4FzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDObO+9AAAAANsl+L8AAAAAgB63vAAAAABxH+U/AAAAAJGkDr0AAAAAhEnuPwAAAADeywW9AAAAANOy9L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJJ3Xj1f3N+MAWyUTegDjAF0lEdAqKF71M/QjXV9lChoBkdAk/26wyIpIGgHTegDaAhHQKilygaFVT91fZQoaAZHQJNq27J4jbBoB03oA2gIR0CoqSMgdOqOdX2UKGgGR0CU/w4fOlfraAdN6ANoCEdAqKlSyrxRVXV9lChoBkdAl1OkFGG21GgHTegDaAhHQKiujPY4ACJ1fZQoaAZHQJMNO+ajN6hoB03oA2gIR0Cosqews5GSdX2UKGgGR0CWB2ZP2wmmaAdN6ANoCEdAqLYE7hegMHV9lChoBkdAlRywZflZHWgHTegDaAhHQKi2Ni1Aqut1fZQoaAZHQJRFsFUyYXxoB03oA2gIR0Cou24K6WgOdX2UKGgGR0CUSRvl2eQNaAdN6ANoCEdAqL+dUbT+enV9lChoBkdAic3LP+n622gHTegDaAhHQKjDAIwdsBR1fZQoaAZHQJMvTpQk5ZNoB03oA2gIR0CowzJxNqQBdX2UKGgGR0CIR4qBEroXaAdN6ANoCEdAqMh0I7eVLXV9lChoBkdAh1sJhOP/72gHTegDaAhHQKjMoU1yeZp1fZQoaAZHQJAAK1/lQuVoB03oA2gIR0Co0AHqNZNgdX2UKGgGR0CMHBROUMXraAdN6ANoCEdAqNAy9Zid8XV9lChoBkdAkE+qFyq+8GgHTegDaAhHQKjVUcjqv/11fZQoaAZHQIzFolMRHwxoB03oA2gIR0Co2XvqC6H1dX2UKGgGR0CQUEFcY64laAdN6ANoCEdAqNzXOQhfSnV9lChoBkdAkVZMcIZ62WgHTegDaAhHQKjdB8jzI3l1fZQoaAZHQIyCqZnctXhoB03oA2gIR0Co4kiiyprDdX2UKGgGR0CXIx5paiblaAdN6ANoCEdAqOeZRTCLuXV9lChoBkdAkz93G8274GgHTegDaAhHQKjrrNDc/MZ1fZQoaAZHQJhT8JZ4fOloB03oA2gIR0Co690uL740dX2UKGgGR0CXD9HBDXvqaAdN6ANoCEdAqPD6y+pOvnV9lChoBkdAlE9XUpd8iWgHTegDaAhHQKj1Az7di2F1fZQoaAZHQJRHWcvugHxoB03oA2gIR0Co+E526kIpdX2UKGgGR0CUB+DLr5ZbaAdN6ANoCEdAqPh9o+Ofd3V9lChoBkdAmH6AOe8PF2gHTegDaAhHQKj9mylenht1fZQoaAZHQJcDEeyRjjJoB03oA2gIR0CpAay/CZWrdX2UKGgGR0CTeR1tfoicaAdN6ANoCEdAqQUOPxQSBnV9lChoBkdAlJttMsYl6mgHTegDaAhHQKkFPgydnTR1fZQoaAZHQJUsVuJk5IZoB03oA2gIR0CpCmP7WNFSdX2UKGgGR0CVHSPuG9HuaAdN6ANoCEdAqQ5wPy08eXV9lChoBkdAlZvzr/sE7mgHTegDaAhHQKkRtLX+VC51fZQoaAZHQJapl7NSqERoB03oA2gIR0CpEeSRSxZ/dX2UKGgGR0CXt4Qla8pTaAdN6ANoCEdAqRcWlANXo3V9lChoBkdAklrVFH8TBmgHTegDaAhHQKkbQ8s+V1R1fZQoaAZHQInhLSkTHsFoB03oA2gIR0CpHqoW56MSdX2UKGgGR0CTGvjIJZ4faAdN6ANoCEdAqR7ZAGB4EHV9lChoBkdAk6hW9L6DXmgHTegDaAhHQKkj9Pbfxc51fZQoaAZHQJYdmGh24d9oB03oA2gIR0CpKBUrCm/GdX2UKGgGR0CUSOiosI3SaAdN6ANoCEdAqStZ0fYBeXV9lChoBkdAlxLEFbFCLWgHTegDaAhHQKkriyad+Xt1fZQoaAZHQJa8bjS5RTFoB03oA2gIR0CpMJcvmHQAdX2UKGgGR0CUn9ASWZ7YaAdN6ANoCEdAqTTCMrEtNHV9lChoBkdAl3GmPkq+amgHTegDaAhHQKk5K+QEIPd1fZQoaAZHQJYMsGbCrLhoB03oA2gIR0CpOXL9VFQVdX2UKGgGR0CTHAwvxpcpaAdN6ANoCEdAqT9hQrMC93V9lChoBkdAlDOAudwvQGgHTegDaAhHQKlDgqEOAiF1fZQoaAZHQJESnyFwkxBoB03oA2gIR0CpRroKUmlZdX2UKGgGR0CWkidYGMXKaAdN6ANoCEdAqUboXXRPXXV9lChoBkdAlKGjqOcUd2gHTegDaAhHQKlL/kgfU4J1fZQoaAZHQJYFdhkRSP5oB03oA2gIR0CpUCZJsfq5dX2UKGgGR0CWROcclw98aAdN6ANoCEdAqVOHDej2z3V9lChoBkdAlfFiVrylN2gHTegDaAhHQKlTu27Wd3B1fZQoaAZHQJfUfKU3XI5oB03oA2gIR0CpWONXgccVdX2UKGgGR0CYviyfcvduaAdN6ANoCEdAqVz739JjD3V9lChoBkdAlbK8GX5WR2gHTegDaAhHQKlgT9CNS611fZQoaAZHQJbtoTHsC1ZoB03oA2gIR0CpYH9H2AXmdX2UKGgGR0CV289YwIt2aAdN6ANoCEdAqWV37WNFSnV9lChoBkdAlSNmuLaVU2gHTegDaAhHQKlptkWhysF1fZQoaAZHQJMnfTvy9VZoB03oA2gIR0CpbQI2XLNfdX2UKGgGR0CS8ygVGkN4aAdN6ANoCEdAqW0yoVEeAHV9lChoBkdAi1rnQyAQQWgHTegDaAhHQKlyTEXtSht1fZQoaAZHQJaBwdjoZAJoB03oA2gIR0CpdmvjXFtLdX2UKGgGR0CUfw2ZiNKiaAdN6ANoCEdAqXm4ZXMhYHV9lChoBkdAjycH1OCXhWgHTegDaAhHQKl56Df3vhJ1fZQoaAZHQJEx+GrS3LFoB03oA2gIR0Cpfxuf29L6dX2UKGgGR0CQ+DkZJkGzaAdN6ANoCEdAqYNT+1jRUnV9lChoBkdAi9Q03wTdtWgHTegDaAhHQKmHRnJT2nN1fZQoaAZHQJIEH2zv7WNoB03oA2gIR0Cph5BwMpgDdX2UKGgGR0CTRAZSeiBYaAdN6ANoCEdAqY3vY4ACGXV9lChoBkdAk5KbiuMdcWgHTegDaAhHQKmSJGbTc7B1fZQoaAZHQJMfczDXOGFoB03oA2gIR0CplXo3zcyndX2UKGgGR0CT11Qf6oETaAdN6ANoCEdAqZWsOd5IH3V9lChoBkdAkUrXyRSxaGgHTegDaAhHQKmaxSw4bS91fZQoaAZHQJXe7XRPXTVoB03oA2gIR0CpnuYAbQ1KdX2UKGgGR0CWKogzxgAqaAdN6ANoCEdAqaI4hr30w3V9lChoBkdAkwNNat9x62gHTegDaAhHQKmiZ+OwPiF1fZQoaAZHQJMZTBk7OmloB03oA2gIR0Cpp3u5z5oHdX2UKGgGR0CS7z5+YtxuaAdN6ANoCEdAqaujsa86FXV9lChoBkdAkz+urdWQwWgHTegDaAhHQKmu+CVbA1x1fZQoaAZHQJMoGHP/rB1oB03oA2gIR0Cprykt/WlNdX2UKGgGR0CWuJjIJZ4faAdN6ANoCEdAqbRhr56+nXV9lChoBkdAklm6nR9gGGgHTegDaAhHQKm4fWZqmCR1fZQoaAZHQIuBUk6cRUZoB03oA2gIR0Cpu8QU5+6RdX2UKGgGR0CTELN70Fr3aAdN6ANoCEdAqbv4SpR4yHV9lChoBkdAkAXl58jRlmgHTegDaAhHQKnBLerMkhR1fZQoaAZHQIakgdELH+9oB03oA2gIR0CpxUoq9XcQdX2UKGgGR0CQMwv+OwPiaAdN6ANoCEdAqck1OKwY+HV9lChoBkdAitL7O3UhFGgHTegDaAhHQKnJfXoTwlV1fZQoaAZHQJCbQlt0mt1oB03oA2gIR0Cpz/iUX531dX2UKGgGR0CPS087IT4+aAdN6ANoCEdAqdQ4iPhhpnV9lChoBkdAkYhsOoYNzGgHTegDaAhHQKnY6K2rn1Z1fZQoaAZHQI896zRhMJxoB03oA2gIR0Cp2TX3xnWbdX2UKGgGR0CM5hvrnkksaAdN6ANoCEdAqd7LmyPdVXV9lChoBkdAj4MeuV5a/2gHTegDaAhHQKni9i2lVLl1fZQoaAZHQJAN5ZFG5MFoB03oA2gIR0Cp5mDG96C2dX2UKGgGR0CS2zySmqHXaAdN6ANoCEdAqeaSWE9MbnVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df0a29c94d09d0dc7a9f9e2c94fd5fb5c835c2fc688ba762d6415b17c7cd704b
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4702b07d71c7e1e7045737b29b62762f7d463ce86b7b301b62bf3161adfbd3c2
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdcea5d65f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdcea5d6680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdcea5d6710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdcea5d67a0>", "_build": "<function ActorCriticPolicy._build at 0x7fdcea5d6830>", "forward": "<function ActorCriticPolicy.forward at 0x7fdcea5d68c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdcea5d6950>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdcea5d69e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdcea5d6a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdcea5d6b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdcea5d6b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdcea62d180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668806741948614409, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAsSuFPeAKVj5eAgzACysCwCXKQr/xA0++Duxevilnrr7QSwK/cCArwFPRDj1Kndg/5eNSv/MZ3r8ROKo+BHNkvdRafb8bQay7mA7iPf8fTD+vH0g/XWGUv0D7GD8kgQc+ppzTPqxC9T6D8Bs/rgZKP3/Lc77t8o+845U8P0OUi75hjKE+sJa0PhPwIr/QUr6+fCcSP7Ko7L622ha/lPiJPrpS9z6d5+6+CRIdP+x1Qz7XX88+zyg7P/lVQb6atAO+cBYnP5bikb7BAyM/eWsiPqac0z6sQvU+g/AbP64GSj9M+r0+TVuXPY0ACMDk/8++60SGvz9qPr4LroY+wRZSvgcag7/8NFY/OGTaPo3/i76HHZA/1Bglve76AT//fty/k+6Gv/T2Dj2pB768so/4PHuwHD5EQIq+s3sEv6GBQLymnNM+25oFwIPwGz9lMqK/7XDSPumoZ7+BJIm/HggDvymXBcASBIU/GX6av3cUA79apCG/WTQ7vilb271IZbe/jieQPxf2Jb2Ohho/i/2lv9w0fL9znUDArhOnvqy7+77PgEm/ZvFFwLhcBb9JYSc8ppzTPtuaBcCD8Bs/ZTKiv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAJgr6jYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDo89q9AAAAANaMAMAAAAAAVgL1PQAAAADwBvM/AAAAAN7H3T0AAAAAy1HnPwAAAADMuSE9AAAAAEXc3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABN9mQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGdbkvQAAAACCAOy/AAAAAAKoAD4AAAAAPPfgPwAAAABoaES9AAAAAIG56T8AAAAA7SBMPQAAAAC3Ktu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvis6NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA+TijoAAAAAzOgAwAAAAAAJ9OE9AAAAAD8y3z8AAAAA6jPuuwAAAADVDts/AAAAAHcnRLwAAAAAYfPuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALR4FzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDObO+9AAAAANsl+L8AAAAAgB63vAAAAABxH+U/AAAAAJGkDr0AAAAAhEnuPwAAAADeywW9AAAAANOy9L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJJ3Xj1f3N+MAWyUTegDjAF0lEdAqKF71M/QjXV9lChoBkdAk/26wyIpIGgHTegDaAhHQKilygaFVT91fZQoaAZHQJNq27J4jbBoB03oA2gIR0CoqSMgdOqOdX2UKGgGR0CU/w4fOlfraAdN6ANoCEdAqKlSyrxRVXV9lChoBkdAl1OkFGG21GgHTegDaAhHQKiujPY4ACJ1fZQoaAZHQJMNO+ajN6hoB03oA2gIR0Cosqews5GSdX2UKGgGR0CWB2ZP2wmmaAdN6ANoCEdAqLYE7hegMHV9lChoBkdAlRywZflZHWgHTegDaAhHQKi2Ni1Aqut1fZQoaAZHQJRFsFUyYXxoB03oA2gIR0Cou24K6WgOdX2UKGgGR0CUSRvl2eQNaAdN6ANoCEdAqL+dUbT+enV9lChoBkdAic3LP+n622gHTegDaAhHQKjDAIwdsBR1fZQoaAZHQJMvTpQk5ZNoB03oA2gIR0CowzJxNqQBdX2UKGgGR0CIR4qBEroXaAdN6ANoCEdAqMh0I7eVLXV9lChoBkdAh1sJhOP/72gHTegDaAhHQKjMoU1yeZp1fZQoaAZHQJAAK1/lQuVoB03oA2gIR0Co0AHqNZNgdX2UKGgGR0CMHBROUMXraAdN6ANoCEdAqNAy9Zid8XV9lChoBkdAkE+qFyq+8GgHTegDaAhHQKjVUcjqv/11fZQoaAZHQIzFolMRHwxoB03oA2gIR0Co2XvqC6H1dX2UKGgGR0CQUEFcY64laAdN6ANoCEdAqNzXOQhfSnV9lChoBkdAkVZMcIZ62WgHTegDaAhHQKjdB8jzI3l1fZQoaAZHQIyCqZnctXhoB03oA2gIR0Co4kiiyprDdX2UKGgGR0CXIx5paiblaAdN6ANoCEdAqOeZRTCLuXV9lChoBkdAkz93G8274GgHTegDaAhHQKjrrNDc/MZ1fZQoaAZHQJhT8JZ4fOloB03oA2gIR0Co690uL740dX2UKGgGR0CXD9HBDXvqaAdN6ANoCEdAqPD6y+pOvnV9lChoBkdAlE9XUpd8iWgHTegDaAhHQKj1Az7di2F1fZQoaAZHQJRHWcvugHxoB03oA2gIR0Co+E526kIpdX2UKGgGR0CUB+DLr5ZbaAdN6ANoCEdAqPh9o+Ofd3V9lChoBkdAmH6AOe8PF2gHTegDaAhHQKj9mylenht1fZQoaAZHQJcDEeyRjjJoB03oA2gIR0CpAay/CZWrdX2UKGgGR0CTeR1tfoicaAdN6ANoCEdAqQUOPxQSBnV9lChoBkdAlJttMsYl6mgHTegDaAhHQKkFPgydnTR1fZQoaAZHQJUsVuJk5IZoB03oA2gIR0CpCmP7WNFSdX2UKGgGR0CVHSPuG9HuaAdN6ANoCEdAqQ5wPy08eXV9lChoBkdAlZvzr/sE7mgHTegDaAhHQKkRtLX+VC51fZQoaAZHQJapl7NSqERoB03oA2gIR0CpEeSRSxZ/dX2UKGgGR0CXt4Qla8pTaAdN6ANoCEdAqRcWlANXo3V9lChoBkdAklrVFH8TBmgHTegDaAhHQKkbQ8s+V1R1fZQoaAZHQInhLSkTHsFoB03oA2gIR0CpHqoW56MSdX2UKGgGR0CTGvjIJZ4faAdN6ANoCEdAqR7ZAGB4EHV9lChoBkdAk6hW9L6DXmgHTegDaAhHQKkj9Pbfxc51fZQoaAZHQJYdmGh24d9oB03oA2gIR0CpKBUrCm/GdX2UKGgGR0CUSOiosI3SaAdN6ANoCEdAqStZ0fYBeXV9lChoBkdAlxLEFbFCLWgHTegDaAhHQKkriyad+Xt1fZQoaAZHQJa8bjS5RTFoB03oA2gIR0CpMJcvmHQAdX2UKGgGR0CUn9ASWZ7YaAdN6ANoCEdAqTTCMrEtNHV9lChoBkdAl3GmPkq+amgHTegDaAhHQKk5K+QEIPd1fZQoaAZHQJYMsGbCrLhoB03oA2gIR0CpOXL9VFQVdX2UKGgGR0CTHAwvxpcpaAdN6ANoCEdAqT9hQrMC93V9lChoBkdAlDOAudwvQGgHTegDaAhHQKlDgqEOAiF1fZQoaAZHQJESnyFwkxBoB03oA2gIR0CpRroKUmlZdX2UKGgGR0CWkidYGMXKaAdN6ANoCEdAqUboXXRPXXV9lChoBkdAlKGjqOcUd2gHTegDaAhHQKlL/kgfU4J1fZQoaAZHQJYFdhkRSP5oB03oA2gIR0CpUCZJsfq5dX2UKGgGR0CWROcclw98aAdN6ANoCEdAqVOHDej2z3V9lChoBkdAlfFiVrylN2gHTegDaAhHQKlTu27Wd3B1fZQoaAZHQJfUfKU3XI5oB03oA2gIR0CpWONXgccVdX2UKGgGR0CYviyfcvduaAdN6ANoCEdAqVz739JjD3V9lChoBkdAlbK8GX5WR2gHTegDaAhHQKlgT9CNS611fZQoaAZHQJbtoTHsC1ZoB03oA2gIR0CpYH9H2AXmdX2UKGgGR0CV289YwIt2aAdN6ANoCEdAqWV37WNFSnV9lChoBkdAlSNmuLaVU2gHTegDaAhHQKlptkWhysF1fZQoaAZHQJMnfTvy9VZoB03oA2gIR0CpbQI2XLNfdX2UKGgGR0CS8ygVGkN4aAdN6ANoCEdAqW0yoVEeAHV9lChoBkdAi1rnQyAQQWgHTegDaAhHQKlyTEXtSht1fZQoaAZHQJaBwdjoZAJoB03oA2gIR0CpdmvjXFtLdX2UKGgGR0CUfw2ZiNKiaAdN6ANoCEdAqXm4ZXMhYHV9lChoBkdAjycH1OCXhWgHTegDaAhHQKl56Df3vhJ1fZQoaAZHQJEx+GrS3LFoB03oA2gIR0Cpfxuf29L6dX2UKGgGR0CQ+DkZJkGzaAdN6ANoCEdAqYNT+1jRUnV9lChoBkdAi9Q03wTdtWgHTegDaAhHQKmHRnJT2nN1fZQoaAZHQJIEH2zv7WNoB03oA2gIR0Cph5BwMpgDdX2UKGgGR0CTRAZSeiBYaAdN6ANoCEdAqY3vY4ACGXV9lChoBkdAk5KbiuMdcWgHTegDaAhHQKmSJGbTc7B1fZQoaAZHQJMfczDXOGFoB03oA2gIR0CplXo3zcyndX2UKGgGR0CT11Qf6oETaAdN6ANoCEdAqZWsOd5IH3V9lChoBkdAkUrXyRSxaGgHTegDaAhHQKmaxSw4bS91fZQoaAZHQJXe7XRPXTVoB03oA2gIR0CpnuYAbQ1KdX2UKGgGR0CWKogzxgAqaAdN6ANoCEdAqaI4hr30w3V9lChoBkdAkwNNat9x62gHTegDaAhHQKmiZ+OwPiF1fZQoaAZHQJMZTBk7OmloB03oA2gIR0Cpp3u5z5oHdX2UKGgGR0CS7z5+YtxuaAdN6ANoCEdAqaujsa86FXV9lChoBkdAkz+urdWQwWgHTegDaAhHQKmu+CVbA1x1fZQoaAZHQJMoGHP/rB1oB03oA2gIR0Cprykt/WlNdX2UKGgGR0CWuJjIJZ4faAdN6ANoCEdAqbRhr56+nXV9lChoBkdAklm6nR9gGGgHTegDaAhHQKm4fWZqmCR1fZQoaAZHQIuBUk6cRUZoB03oA2gIR0Cpu8QU5+6RdX2UKGgGR0CTELN70Fr3aAdN6ANoCEdAqbv4SpR4yHV9lChoBkdAkAXl58jRlmgHTegDaAhHQKnBLerMkhR1fZQoaAZHQIakgdELH+9oB03oA2gIR0CpxUoq9XcQdX2UKGgGR0CQMwv+OwPiaAdN6ANoCEdAqck1OKwY+HV9lChoBkdAitL7O3UhFGgHTegDaAhHQKnJfXoTwlV1fZQoaAZHQJCbQlt0mt1oB03oA2gIR0Cpz/iUX531dX2UKGgGR0CPS087IT4+aAdN6ANoCEdAqdQ4iPhhpnV9lChoBkdAkYhsOoYNzGgHTegDaAhHQKnY6K2rn1Z1fZQoaAZHQI896zRhMJxoB03oA2gIR0Cp2TX3xnWbdX2UKGgGR0CM5hvrnkksaAdN6ANoCEdAqd7LmyPdVXV9lChoBkdAj4MeuV5a/2gHTegDaAhHQKni9i2lVLl1fZQoaAZHQJAN5ZFG5MFoB03oA2gIR0Cp5mDG96C2dX2UKGgGR0CS2zySmqHXaAdN6ANoCEdAqeaSWE9MbnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (940 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 953.9896000545384, "std_reward": 100.86478895181716, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-18T22:41:32.999741"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8040caa141021006dcb304dbdb6b32ef364fb88c399f20fe7cf01816d62764e
|
3 |
+
size 2763
|