Delete Medicine Recommendation System.ipynb
Browse files- Medicine Recommendation System.ipynb +0 -1031
Medicine Recommendation System.ipynb
DELETED
@@ -1,1031 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"id": "c755214a",
|
6 |
-
"metadata": {},
|
7 |
-
"source": [
|
8 |
-
"# Title: Personalized Medical Recommendation System with Machine Learning\n",
|
9 |
-
"\n",
|
10 |
-
"# Description:\n",
|
11 |
-
"\n",
|
12 |
-
"Welcome to our cutting-edge Personalized Medical Recommendation System, a powerful platform designed to assist users in understanding and managing their health. Leveraging the capabilities of machine learning, our system analyzes user-input symptoms to predict potential diseases accurately."
|
13 |
-
]
|
14 |
-
},
|
15 |
-
{
|
16 |
-
"cell_type": "markdown",
|
17 |
-
"id": "db119e1e",
|
18 |
-
"metadata": {},
|
19 |
-
"source": [
|
20 |
-
"# load dataset & tools"
|
21 |
-
]
|
22 |
-
},
|
23 |
-
{
|
24 |
-
"cell_type": "code",
|
25 |
-
"execution_count": 1,
|
26 |
-
"id": "4e4766bf",
|
27 |
-
"metadata": {},
|
28 |
-
"outputs": [],
|
29 |
-
"source": [
|
30 |
-
"import pandas as pd"
|
31 |
-
]
|
32 |
-
},
|
33 |
-
{
|
34 |
-
"cell_type": "code",
|
35 |
-
"execution_count": 2,
|
36 |
-
"id": "56ce4778",
|
37 |
-
"metadata": {},
|
38 |
-
"outputs": [],
|
39 |
-
"source": [
|
40 |
-
"dataset = pd.read_csv('Training.csv')"
|
41 |
-
]
|
42 |
-
},
|
43 |
-
{
|
44 |
-
"cell_type": "code",
|
45 |
-
"execution_count": 3,
|
46 |
-
"id": "5f18d6d2",
|
47 |
-
"metadata": {},
|
48 |
-
"outputs": [
|
49 |
-
{
|
50 |
-
"data": {
|
51 |
-
"text/html": [
|
52 |
-
"<div>\n",
|
53 |
-
"<style scoped>\n",
|
54 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
55 |
-
" vertical-align: middle;\n",
|
56 |
-
" }\n",
|
57 |
-
"\n",
|
58 |
-
" .dataframe tbody tr th {\n",
|
59 |
-
" vertical-align: top;\n",
|
60 |
-
" }\n",
|
61 |
-
"\n",
|
62 |
-
" .dataframe thead th {\n",
|
63 |
-
" text-align: right;\n",
|
64 |
-
" }\n",
|
65 |
-
"</style>\n",
|
66 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
67 |
-
" <thead>\n",
|
68 |
-
" <tr style=\"text-align: right;\">\n",
|
69 |
-
" <th></th>\n",
|
70 |
-
" <th>itching</th>\n",
|
71 |
-
" <th>skin_rash</th>\n",
|
72 |
-
" <th>nodal_skin_eruptions</th>\n",
|
73 |
-
" <th>continuous_sneezing</th>\n",
|
74 |
-
" <th>shivering</th>\n",
|
75 |
-
" <th>chills</th>\n",
|
76 |
-
" <th>joint_pain</th>\n",
|
77 |
-
" <th>stomach_pain</th>\n",
|
78 |
-
" <th>acidity</th>\n",
|
79 |
-
" <th>ulcers_on_tongue</th>\n",
|
80 |
-
" <th>...</th>\n",
|
81 |
-
" <th>blackheads</th>\n",
|
82 |
-
" <th>scurring</th>\n",
|
83 |
-
" <th>skin_peeling</th>\n",
|
84 |
-
" <th>silver_like_dusting</th>\n",
|
85 |
-
" <th>small_dents_in_nails</th>\n",
|
86 |
-
" <th>inflammatory_nails</th>\n",
|
87 |
-
" <th>blister</th>\n",
|
88 |
-
" <th>red_sore_around_nose</th>\n",
|
89 |
-
" <th>yellow_crust_ooze</th>\n",
|
90 |
-
" <th>prognosis</th>\n",
|
91 |
-
" </tr>\n",
|
92 |
-
" </thead>\n",
|
93 |
-
" <tbody>\n",
|
94 |
-
" <tr>\n",
|
95 |
-
" <th>0</th>\n",
|
96 |
-
" <td>1</td>\n",
|
97 |
-
" <td>1</td>\n",
|
98 |
-
" <td>1</td>\n",
|
99 |
-
" <td>0</td>\n",
|
100 |
-
" <td>0</td>\n",
|
101 |
-
" <td>0</td>\n",
|
102 |
-
" <td>0</td>\n",
|
103 |
-
" <td>0</td>\n",
|
104 |
-
" <td>0</td>\n",
|
105 |
-
" <td>0</td>\n",
|
106 |
-
" <td>...</td>\n",
|
107 |
-
" <td>0</td>\n",
|
108 |
-
" <td>0</td>\n",
|
109 |
-
" <td>0</td>\n",
|
110 |
-
" <td>0</td>\n",
|
111 |
-
" <td>0</td>\n",
|
112 |
-
" <td>0</td>\n",
|
113 |
-
" <td>0</td>\n",
|
114 |
-
" <td>0</td>\n",
|
115 |
-
" <td>0</td>\n",
|
116 |
-
" <td>Fungal infection</td>\n",
|
117 |
-
" </tr>\n",
|
118 |
-
" <tr>\n",
|
119 |
-
" <th>1</th>\n",
|
120 |
-
" <td>0</td>\n",
|
121 |
-
" <td>1</td>\n",
|
122 |
-
" <td>1</td>\n",
|
123 |
-
" <td>0</td>\n",
|
124 |
-
" <td>0</td>\n",
|
125 |
-
" <td>0</td>\n",
|
126 |
-
" <td>0</td>\n",
|
127 |
-
" <td>0</td>\n",
|
128 |
-
" <td>0</td>\n",
|
129 |
-
" <td>0</td>\n",
|
130 |
-
" <td>...</td>\n",
|
131 |
-
" <td>0</td>\n",
|
132 |
-
" <td>0</td>\n",
|
133 |
-
" <td>0</td>\n",
|
134 |
-
" <td>0</td>\n",
|
135 |
-
" <td>0</td>\n",
|
136 |
-
" <td>0</td>\n",
|
137 |
-
" <td>0</td>\n",
|
138 |
-
" <td>0</td>\n",
|
139 |
-
" <td>0</td>\n",
|
140 |
-
" <td>Fungal infection</td>\n",
|
141 |
-
" </tr>\n",
|
142 |
-
" <tr>\n",
|
143 |
-
" <th>2</th>\n",
|
144 |
-
" <td>1</td>\n",
|
145 |
-
" <td>0</td>\n",
|
146 |
-
" <td>1</td>\n",
|
147 |
-
" <td>0</td>\n",
|
148 |
-
" <td>0</td>\n",
|
149 |
-
" <td>0</td>\n",
|
150 |
-
" <td>0</td>\n",
|
151 |
-
" <td>0</td>\n",
|
152 |
-
" <td>0</td>\n",
|
153 |
-
" <td>0</td>\n",
|
154 |
-
" <td>...</td>\n",
|
155 |
-
" <td>0</td>\n",
|
156 |
-
" <td>0</td>\n",
|
157 |
-
" <td>0</td>\n",
|
158 |
-
" <td>0</td>\n",
|
159 |
-
" <td>0</td>\n",
|
160 |
-
" <td>0</td>\n",
|
161 |
-
" <td>0</td>\n",
|
162 |
-
" <td>0</td>\n",
|
163 |
-
" <td>0</td>\n",
|
164 |
-
" <td>Fungal infection</td>\n",
|
165 |
-
" </tr>\n",
|
166 |
-
" <tr>\n",
|
167 |
-
" <th>3</th>\n",
|
168 |
-
" <td>1</td>\n",
|
169 |
-
" <td>1</td>\n",
|
170 |
-
" <td>0</td>\n",
|
171 |
-
" <td>0</td>\n",
|
172 |
-
" <td>0</td>\n",
|
173 |
-
" <td>0</td>\n",
|
174 |
-
" <td>0</td>\n",
|
175 |
-
" <td>0</td>\n",
|
176 |
-
" <td>0</td>\n",
|
177 |
-
" <td>0</td>\n",
|
178 |
-
" <td>...</td>\n",
|
179 |
-
" <td>0</td>\n",
|
180 |
-
" <td>0</td>\n",
|
181 |
-
" <td>0</td>\n",
|
182 |
-
" <td>0</td>\n",
|
183 |
-
" <td>0</td>\n",
|
184 |
-
" <td>0</td>\n",
|
185 |
-
" <td>0</td>\n",
|
186 |
-
" <td>0</td>\n",
|
187 |
-
" <td>0</td>\n",
|
188 |
-
" <td>Fungal infection</td>\n",
|
189 |
-
" </tr>\n",
|
190 |
-
" <tr>\n",
|
191 |
-
" <th>4</th>\n",
|
192 |
-
" <td>1</td>\n",
|
193 |
-
" <td>1</td>\n",
|
194 |
-
" <td>1</td>\n",
|
195 |
-
" <td>0</td>\n",
|
196 |
-
" <td>0</td>\n",
|
197 |
-
" <td>0</td>\n",
|
198 |
-
" <td>0</td>\n",
|
199 |
-
" <td>0</td>\n",
|
200 |
-
" <td>0</td>\n",
|
201 |
-
" <td>0</td>\n",
|
202 |
-
" <td>...</td>\n",
|
203 |
-
" <td>0</td>\n",
|
204 |
-
" <td>0</td>\n",
|
205 |
-
" <td>0</td>\n",
|
206 |
-
" <td>0</td>\n",
|
207 |
-
" <td>0</td>\n",
|
208 |
-
" <td>0</td>\n",
|
209 |
-
" <td>0</td>\n",
|
210 |
-
" <td>0</td>\n",
|
211 |
-
" <td>0</td>\n",
|
212 |
-
" <td>Fungal infection</td>\n",
|
213 |
-
" </tr>\n",
|
214 |
-
" <tr>\n",
|
215 |
-
" <th>...</th>\n",
|
216 |
-
" <td>...</td>\n",
|
217 |
-
" <td>...</td>\n",
|
218 |
-
" <td>...</td>\n",
|
219 |
-
" <td>...</td>\n",
|
220 |
-
" <td>...</td>\n",
|
221 |
-
" <td>...</td>\n",
|
222 |
-
" <td>...</td>\n",
|
223 |
-
" <td>...</td>\n",
|
224 |
-
" <td>...</td>\n",
|
225 |
-
" <td>...</td>\n",
|
226 |
-
" <td>...</td>\n",
|
227 |
-
" <td>...</td>\n",
|
228 |
-
" <td>...</td>\n",
|
229 |
-
" <td>...</td>\n",
|
230 |
-
" <td>...</td>\n",
|
231 |
-
" <td>...</td>\n",
|
232 |
-
" <td>...</td>\n",
|
233 |
-
" <td>...</td>\n",
|
234 |
-
" <td>...</td>\n",
|
235 |
-
" <td>...</td>\n",
|
236 |
-
" <td>...</td>\n",
|
237 |
-
" </tr>\n",
|
238 |
-
" <tr>\n",
|
239 |
-
" <th>4915</th>\n",
|
240 |
-
" <td>0</td>\n",
|
241 |
-
" <td>0</td>\n",
|
242 |
-
" <td>0</td>\n",
|
243 |
-
" <td>0</td>\n",
|
244 |
-
" <td>0</td>\n",
|
245 |
-
" <td>0</td>\n",
|
246 |
-
" <td>0</td>\n",
|
247 |
-
" <td>0</td>\n",
|
248 |
-
" <td>0</td>\n",
|
249 |
-
" <td>0</td>\n",
|
250 |
-
" <td>...</td>\n",
|
251 |
-
" <td>0</td>\n",
|
252 |
-
" <td>0</td>\n",
|
253 |
-
" <td>0</td>\n",
|
254 |
-
" <td>0</td>\n",
|
255 |
-
" <td>0</td>\n",
|
256 |
-
" <td>0</td>\n",
|
257 |
-
" <td>0</td>\n",
|
258 |
-
" <td>0</td>\n",
|
259 |
-
" <td>0</td>\n",
|
260 |
-
" <td>(vertigo) Paroymsal Positional Vertigo</td>\n",
|
261 |
-
" </tr>\n",
|
262 |
-
" <tr>\n",
|
263 |
-
" <th>4916</th>\n",
|
264 |
-
" <td>0</td>\n",
|
265 |
-
" <td>1</td>\n",
|
266 |
-
" <td>0</td>\n",
|
267 |
-
" <td>0</td>\n",
|
268 |
-
" <td>0</td>\n",
|
269 |
-
" <td>0</td>\n",
|
270 |
-
" <td>0</td>\n",
|
271 |
-
" <td>0</td>\n",
|
272 |
-
" <td>0</td>\n",
|
273 |
-
" <td>0</td>\n",
|
274 |
-
" <td>...</td>\n",
|
275 |
-
" <td>1</td>\n",
|
276 |
-
" <td>1</td>\n",
|
277 |
-
" <td>0</td>\n",
|
278 |
-
" <td>0</td>\n",
|
279 |
-
" <td>0</td>\n",
|
280 |
-
" <td>0</td>\n",
|
281 |
-
" <td>0</td>\n",
|
282 |
-
" <td>0</td>\n",
|
283 |
-
" <td>0</td>\n",
|
284 |
-
" <td>Acne</td>\n",
|
285 |
-
" </tr>\n",
|
286 |
-
" <tr>\n",
|
287 |
-
" <th>4917</th>\n",
|
288 |
-
" <td>0</td>\n",
|
289 |
-
" <td>0</td>\n",
|
290 |
-
" <td>0</td>\n",
|
291 |
-
" <td>0</td>\n",
|
292 |
-
" <td>0</td>\n",
|
293 |
-
" <td>0</td>\n",
|
294 |
-
" <td>0</td>\n",
|
295 |
-
" <td>0</td>\n",
|
296 |
-
" <td>0</td>\n",
|
297 |
-
" <td>0</td>\n",
|
298 |
-
" <td>...</td>\n",
|
299 |
-
" <td>0</td>\n",
|
300 |
-
" <td>0</td>\n",
|
301 |
-
" <td>0</td>\n",
|
302 |
-
" <td>0</td>\n",
|
303 |
-
" <td>0</td>\n",
|
304 |
-
" <td>0</td>\n",
|
305 |
-
" <td>0</td>\n",
|
306 |
-
" <td>0</td>\n",
|
307 |
-
" <td>0</td>\n",
|
308 |
-
" <td>Urinary tract infection</td>\n",
|
309 |
-
" </tr>\n",
|
310 |
-
" <tr>\n",
|
311 |
-
" <th>4918</th>\n",
|
312 |
-
" <td>0</td>\n",
|
313 |
-
" <td>1</td>\n",
|
314 |
-
" <td>0</td>\n",
|
315 |
-
" <td>0</td>\n",
|
316 |
-
" <td>0</td>\n",
|
317 |
-
" <td>0</td>\n",
|
318 |
-
" <td>1</td>\n",
|
319 |
-
" <td>0</td>\n",
|
320 |
-
" <td>0</td>\n",
|
321 |
-
" <td>0</td>\n",
|
322 |
-
" <td>...</td>\n",
|
323 |
-
" <td>0</td>\n",
|
324 |
-
" <td>0</td>\n",
|
325 |
-
" <td>1</td>\n",
|
326 |
-
" <td>1</td>\n",
|
327 |
-
" <td>1</td>\n",
|
328 |
-
" <td>1</td>\n",
|
329 |
-
" <td>0</td>\n",
|
330 |
-
" <td>0</td>\n",
|
331 |
-
" <td>0</td>\n",
|
332 |
-
" <td>Psoriasis</td>\n",
|
333 |
-
" </tr>\n",
|
334 |
-
" <tr>\n",
|
335 |
-
" <th>4919</th>\n",
|
336 |
-
" <td>0</td>\n",
|
337 |
-
" <td>1</td>\n",
|
338 |
-
" <td>0</td>\n",
|
339 |
-
" <td>0</td>\n",
|
340 |
-
" <td>0</td>\n",
|
341 |
-
" <td>0</td>\n",
|
342 |
-
" <td>0</td>\n",
|
343 |
-
" <td>0</td>\n",
|
344 |
-
" <td>0</td>\n",
|
345 |
-
" <td>0</td>\n",
|
346 |
-
" <td>...</td>\n",
|
347 |
-
" <td>0</td>\n",
|
348 |
-
" <td>0</td>\n",
|
349 |
-
" <td>0</td>\n",
|
350 |
-
" <td>0</td>\n",
|
351 |
-
" <td>0</td>\n",
|
352 |
-
" <td>0</td>\n",
|
353 |
-
" <td>1</td>\n",
|
354 |
-
" <td>1</td>\n",
|
355 |
-
" <td>1</td>\n",
|
356 |
-
" <td>Impetigo</td>\n",
|
357 |
-
" </tr>\n",
|
358 |
-
" </tbody>\n",
|
359 |
-
"</table>\n",
|
360 |
-
"<p>4920 rows × 133 columns</p>\n",
|
361 |
-
"</div>"
|
362 |
-
],
|
363 |
-
"text/plain": [
|
364 |
-
" itching skin_rash nodal_skin_eruptions continuous_sneezing \\\n",
|
365 |
-
"0 1 1 1 0 \n",
|
366 |
-
"1 0 1 1 0 \n",
|
367 |
-
"2 1 0 1 0 \n",
|
368 |
-
"3 1 1 0 0 \n",
|
369 |
-
"4 1 1 1 0 \n",
|
370 |
-
"... ... ... ... ... \n",
|
371 |
-
"4915 0 0 0 0 \n",
|
372 |
-
"4916 0 1 0 0 \n",
|
373 |
-
"4917 0 0 0 0 \n",
|
374 |
-
"4918 0 1 0 0 \n",
|
375 |
-
"4919 0 1 0 0 \n",
|
376 |
-
"\n",
|
377 |
-
" shivering chills joint_pain stomach_pain acidity ulcers_on_tongue \\\n",
|
378 |
-
"0 0 0 0 0 0 0 \n",
|
379 |
-
"1 0 0 0 0 0 0 \n",
|
380 |
-
"2 0 0 0 0 0 0 \n",
|
381 |
-
"3 0 0 0 0 0 0 \n",
|
382 |
-
"4 0 0 0 0 0 0 \n",
|
383 |
-
"... ... ... ... ... ... ... \n",
|
384 |
-
"4915 0 0 0 0 0 0 \n",
|
385 |
-
"4916 0 0 0 0 0 0 \n",
|
386 |
-
"4917 0 0 0 0 0 0 \n",
|
387 |
-
"4918 0 0 1 0 0 0 \n",
|
388 |
-
"4919 0 0 0 0 0 0 \n",
|
389 |
-
"\n",
|
390 |
-
" ... blackheads scurring skin_peeling silver_like_dusting \\\n",
|
391 |
-
"0 ... 0 0 0 0 \n",
|
392 |
-
"1 ... 0 0 0 0 \n",
|
393 |
-
"2 ... 0 0 0 0 \n",
|
394 |
-
"3 ... 0 0 0 0 \n",
|
395 |
-
"4 ... 0 0 0 0 \n",
|
396 |
-
"... ... ... ... ... ... \n",
|
397 |
-
"4915 ... 0 0 0 0 \n",
|
398 |
-
"4916 ... 1 1 0 0 \n",
|
399 |
-
"4917 ... 0 0 0 0 \n",
|
400 |
-
"4918 ... 0 0 1 1 \n",
|
401 |
-
"4919 ... 0 0 0 0 \n",
|
402 |
-
"\n",
|
403 |
-
" small_dents_in_nails inflammatory_nails blister red_sore_around_nose \\\n",
|
404 |
-
"0 0 0 0 0 \n",
|
405 |
-
"1 0 0 0 0 \n",
|
406 |
-
"2 0 0 0 0 \n",
|
407 |
-
"3 0 0 0 0 \n",
|
408 |
-
"4 0 0 0 0 \n",
|
409 |
-
"... ... ... ... ... \n",
|
410 |
-
"4915 0 0 0 0 \n",
|
411 |
-
"4916 0 0 0 0 \n",
|
412 |
-
"4917 0 0 0 0 \n",
|
413 |
-
"4918 1 1 0 0 \n",
|
414 |
-
"4919 0 0 1 1 \n",
|
415 |
-
"\n",
|
416 |
-
" yellow_crust_ooze prognosis \n",
|
417 |
-
"0 0 Fungal infection \n",
|
418 |
-
"1 0 Fungal infection \n",
|
419 |
-
"2 0 Fungal infection \n",
|
420 |
-
"3 0 Fungal infection \n",
|
421 |
-
"4 0 Fungal infection \n",
|
422 |
-
"... ... ... \n",
|
423 |
-
"4915 0 (vertigo) Paroymsal Positional Vertigo \n",
|
424 |
-
"4916 0 Acne \n",
|
425 |
-
"4917 0 Urinary tract infection \n",
|
426 |
-
"4918 0 Psoriasis \n",
|
427 |
-
"4919 1 Impetigo \n",
|
428 |
-
"\n",
|
429 |
-
"[4920 rows x 133 columns]"
|
430 |
-
]
|
431 |
-
},
|
432 |
-
"execution_count": 3,
|
433 |
-
"metadata": {},
|
434 |
-
"output_type": "execute_result"
|
435 |
-
}
|
436 |
-
],
|
437 |
-
"source": [
|
438 |
-
"dataset"
|
439 |
-
]
|
440 |
-
},
|
441 |
-
{
|
442 |
-
"cell_type": "code",
|
443 |
-
"execution_count": 4,
|
444 |
-
"id": "f49b2b12",
|
445 |
-
"metadata": {},
|
446 |
-
"outputs": [],
|
447 |
-
"source": [
|
448 |
-
"# vals = dataset.values.flatten()"
|
449 |
-
]
|
450 |
-
},
|
451 |
-
{
|
452 |
-
"cell_type": "code",
|
453 |
-
"execution_count": 5,
|
454 |
-
"id": "a49049bd",
|
455 |
-
"metadata": {},
|
456 |
-
"outputs": [
|
457 |
-
{
|
458 |
-
"data": {
|
459 |
-
"text/plain": [
|
460 |
-
"(4920, 133)"
|
461 |
-
]
|
462 |
-
},
|
463 |
-
"execution_count": 5,
|
464 |
-
"metadata": {},
|
465 |
-
"output_type": "execute_result"
|
466 |
-
}
|
467 |
-
],
|
468 |
-
"source": [
|
469 |
-
"dataset.shape"
|
470 |
-
]
|
471 |
-
},
|
472 |
-
{
|
473 |
-
"cell_type": "markdown",
|
474 |
-
"id": "2db916ab",
|
475 |
-
"metadata": {},
|
476 |
-
"source": [
|
477 |
-
"# train test split"
|
478 |
-
]
|
479 |
-
},
|
480 |
-
{
|
481 |
-
"cell_type": "code",
|
482 |
-
"execution_count": 15,
|
483 |
-
"id": "b1e9c647",
|
484 |
-
"metadata": {},
|
485 |
-
"outputs": [],
|
486 |
-
"source": [
|
487 |
-
"from sklearn.model_selection import train_test_split\n",
|
488 |
-
"from sklearn.preprocessing import LabelEncoder"
|
489 |
-
]
|
490 |
-
},
|
491 |
-
{
|
492 |
-
"cell_type": "code",
|
493 |
-
"execution_count": 16,
|
494 |
-
"id": "4cb2e972",
|
495 |
-
"metadata": {},
|
496 |
-
"outputs": [],
|
497 |
-
"source": [
|
498 |
-
"X = dataset.drop('prognosis', axis=1)\n",
|
499 |
-
"y = dataset['prognosis']\n",
|
500 |
-
"\n",
|
501 |
-
"# ecoding prognonsis\n",
|
502 |
-
"le = LabelEncoder()\n",
|
503 |
-
"le.fit(y)\n",
|
504 |
-
"Y = le.transform(y)\n",
|
505 |
-
" \n",
|
506 |
-
"X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=20)"
|
507 |
-
]
|
508 |
-
},
|
509 |
-
{
|
510 |
-
"cell_type": "markdown",
|
511 |
-
"id": "1c1a9ed2",
|
512 |
-
"metadata": {},
|
513 |
-
"source": [
|
514 |
-
"# Training top models"
|
515 |
-
]
|
516 |
-
},
|
517 |
-
{
|
518 |
-
"cell_type": "code",
|
519 |
-
"execution_count": 8,
|
520 |
-
"id": "5b9c4a9e",
|
521 |
-
"metadata": {},
|
522 |
-
"outputs": [
|
523 |
-
{
|
524 |
-
"name": "stdout",
|
525 |
-
"output_type": "stream",
|
526 |
-
"text": [
|
527 |
-
"SVC Accuracy: 1.0\n",
|
528 |
-
"SVC Confusion Matrix:\n",
|
529 |
-
"[[40, 0, 0, ..., 0, 0, 0],\n",
|
530 |
-
" [ 0, 43, 0, ..., 0, 0, 0],\n",
|
531 |
-
" [ 0, 0, 28, ..., 0, 0, 0],\n",
|
532 |
-
" ...,\n",
|
533 |
-
" [ 0, 0, 0, ..., 34, 0, 0],\n",
|
534 |
-
" [ 0, 0, 0, ..., 0, 41, 0],\n",
|
535 |
-
" [ 0, 0, 0, ..., 0, 0, 31]]\n",
|
536 |
-
"\n",
|
537 |
-
"========================================\n",
|
538 |
-
"\n",
|
539 |
-
"RandomForest Accuracy: 1.0\n",
|
540 |
-
"RandomForest Confusion Matrix:\n",
|
541 |
-
"[[40, 0, 0, ..., 0, 0, 0],\n",
|
542 |
-
" [ 0, 43, 0, ..., 0, 0, 0],\n",
|
543 |
-
" [ 0, 0, 28, ..., 0, 0, 0],\n",
|
544 |
-
" ...,\n",
|
545 |
-
" [ 0, 0, 0, ..., 34, 0, 0],\n",
|
546 |
-
" [ 0, 0, 0, ..., 0, 41, 0],\n",
|
547 |
-
" [ 0, 0, 0, ..., 0, 0, 31]]\n",
|
548 |
-
"\n",
|
549 |
-
"========================================\n",
|
550 |
-
"\n",
|
551 |
-
"GradientBoosting Accuracy: 1.0\n",
|
552 |
-
"GradientBoosting Confusion Matrix:\n",
|
553 |
-
"[[40, 0, 0, ..., 0, 0, 0],\n",
|
554 |
-
" [ 0, 43, 0, ..., 0, 0, 0],\n",
|
555 |
-
" [ 0, 0, 28, ..., 0, 0, 0],\n",
|
556 |
-
" ...,\n",
|
557 |
-
" [ 0, 0, 0, ..., 34, 0, 0],\n",
|
558 |
-
" [ 0, 0, 0, ..., 0, 41, 0],\n",
|
559 |
-
" [ 0, 0, 0, ..., 0, 0, 31]]\n",
|
560 |
-
"\n",
|
561 |
-
"========================================\n",
|
562 |
-
"\n",
|
563 |
-
"KNeighbors Accuracy: 1.0\n",
|
564 |
-
"KNeighbors Confusion Matrix:\n",
|
565 |
-
"[[40, 0, 0, ..., 0, 0, 0],\n",
|
566 |
-
" [ 0, 43, 0, ..., 0, 0, 0],\n",
|
567 |
-
" [ 0, 0, 28, ..., 0, 0, 0],\n",
|
568 |
-
" ...,\n",
|
569 |
-
" [ 0, 0, 0, ..., 34, 0, 0],\n",
|
570 |
-
" [ 0, 0, 0, ..., 0, 41, 0],\n",
|
571 |
-
" [ 0, 0, 0, ..., 0, 0, 31]]\n",
|
572 |
-
"\n",
|
573 |
-
"========================================\n",
|
574 |
-
"\n",
|
575 |
-
"MultinomialNB Accuracy: 1.0\n",
|
576 |
-
"MultinomialNB Confusion Matrix:\n",
|
577 |
-
"[[40, 0, 0, ..., 0, 0, 0],\n",
|
578 |
-
" [ 0, 43, 0, ..., 0, 0, 0],\n",
|
579 |
-
" [ 0, 0, 28, ..., 0, 0, 0],\n",
|
580 |
-
" ...,\n",
|
581 |
-
" [ 0, 0, 0, ..., 34, 0, 0],\n",
|
582 |
-
" [ 0, 0, 0, ..., 0, 41, 0],\n",
|
583 |
-
" [ 0, 0, 0, ..., 0, 0, 31]]\n",
|
584 |
-
"\n",
|
585 |
-
"========================================\n",
|
586 |
-
"\n"
|
587 |
-
]
|
588 |
-
}
|
589 |
-
],
|
590 |
-
"source": [
|
591 |
-
"from sklearn.datasets import make_classification\n",
|
592 |
-
"from sklearn.model_selection import train_test_split\n",
|
593 |
-
"from sklearn.svm import SVC\n",
|
594 |
-
"from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier\n",
|
595 |
-
"from sklearn.neighbors import KNeighborsClassifier\n",
|
596 |
-
"from sklearn.naive_bayes import MultinomialNB\n",
|
597 |
-
"from sklearn.metrics import accuracy_score, confusion_matrix\n",
|
598 |
-
"import numpy as np\n",
|
599 |
-
"\n",
|
600 |
-
"\n",
|
601 |
-
"# Create a dictionary to store models\n",
|
602 |
-
"models = {\n",
|
603 |
-
" 'SVC': SVC(kernel='linear'),\n",
|
604 |
-
" 'RandomForest': RandomForestClassifier(n_estimators=100, random_state=42),\n",
|
605 |
-
" 'GradientBoosting': GradientBoostingClassifier(n_estimators=100, random_state=42),\n",
|
606 |
-
" 'KNeighbors': KNeighborsClassifier(n_neighbors=5),\n",
|
607 |
-
" 'MultinomialNB': MultinomialNB()\n",
|
608 |
-
"}\n",
|
609 |
-
"\n",
|
610 |
-
"# Loop through the models, train, test, and print results\n",
|
611 |
-
"for model_name, model in models.items():\n",
|
612 |
-
" # Train the model\n",
|
613 |
-
" model.fit(X_train, y_train)\n",
|
614 |
-
"\n",
|
615 |
-
" # Test the model\n",
|
616 |
-
" predictions = model.predict(X_test)\n",
|
617 |
-
"\n",
|
618 |
-
" # Calculate accuracy\n",
|
619 |
-
" accuracy = accuracy_score(y_test, predictions)\n",
|
620 |
-
" print(f\"{model_name} Accuracy: {accuracy}\")\n",
|
621 |
-
"\n",
|
622 |
-
" # Calculate confusion matrix\n",
|
623 |
-
" cm = confusion_matrix(y_test, predictions)\n",
|
624 |
-
" print(f\"{model_name} Confusion Matrix:\")\n",
|
625 |
-
" print(np.array2string(cm, separator=', '))\n",
|
626 |
-
"\n",
|
627 |
-
" print(\"\\n\" + \"=\"*40 + \"\\n\")\n"
|
628 |
-
]
|
629 |
-
},
|
630 |
-
{
|
631 |
-
"cell_type": "markdown",
|
632 |
-
"id": "36cee3c8",
|
633 |
-
"metadata": {},
|
634 |
-
"source": [
|
635 |
-
"# single prediction"
|
636 |
-
]
|
637 |
-
},
|
638 |
-
{
|
639 |
-
"cell_type": "code",
|
640 |
-
"execution_count": 18,
|
641 |
-
"id": "a74ad639",
|
642 |
-
"metadata": {},
|
643 |
-
"outputs": [
|
644 |
-
{
|
645 |
-
"data": {
|
646 |
-
"text/plain": [
|
647 |
-
"1.0"
|
648 |
-
]
|
649 |
-
},
|
650 |
-
"execution_count": 18,
|
651 |
-
"metadata": {},
|
652 |
-
"output_type": "execute_result"
|
653 |
-
}
|
654 |
-
],
|
655 |
-
"source": [
|
656 |
-
"# selecting svc\n",
|
657 |
-
"svc = SVC(kernel='linear')\n",
|
658 |
-
"svc.fit(X_train,y_train)\n",
|
659 |
-
"ypred = svc.predict(X_test)\n",
|
660 |
-
"accuracy_score(y_test,ypred)"
|
661 |
-
]
|
662 |
-
},
|
663 |
-
{
|
664 |
-
"cell_type": "code",
|
665 |
-
"execution_count": 114,
|
666 |
-
"id": "fdd98daa",
|
667 |
-
"metadata": {},
|
668 |
-
"outputs": [],
|
669 |
-
"source": [
|
670 |
-
"# save svc\n",
|
671 |
-
"import pickle\n",
|
672 |
-
"pickle.dump(svc,open('svc.pkl','wb'))"
|
673 |
-
]
|
674 |
-
},
|
675 |
-
{
|
676 |
-
"cell_type": "code",
|
677 |
-
"execution_count": 115,
|
678 |
-
"id": "4dd13145",
|
679 |
-
"metadata": {},
|
680 |
-
"outputs": [],
|
681 |
-
"source": [
|
682 |
-
"# load model\n",
|
683 |
-
"svc = pickle.load(open('svc.pkl','rb'))"
|
684 |
-
]
|
685 |
-
},
|
686 |
-
{
|
687 |
-
"cell_type": "code",
|
688 |
-
"execution_count": 116,
|
689 |
-
"id": "8bf40f9d",
|
690 |
-
"metadata": {},
|
691 |
-
"outputs": [
|
692 |
-
{
|
693 |
-
"name": "stdout",
|
694 |
-
"output_type": "stream",
|
695 |
-
"text": [
|
696 |
-
"predicted disease : [40]\n",
|
697 |
-
"Actual Disease : 40\n"
|
698 |
-
]
|
699 |
-
},
|
700 |
-
{
|
701 |
-
"name": "stderr",
|
702 |
-
"output_type": "stream",
|
703 |
-
"text": [
|
704 |
-
"C:\\Users\\naimat\\anaconda3\\lib\\site-packages\\sklearn\\base.py:465: UserWarning: X does not have valid feature names, but SVC was fitted with feature names\n",
|
705 |
-
" warnings.warn(\n"
|
706 |
-
]
|
707 |
-
}
|
708 |
-
],
|
709 |
-
"source": [
|
710 |
-
"# test 1:\n",
|
711 |
-
"print(\"predicted disease :\",svc.predict(X_test.iloc[0].values.reshape(1,-1)))\n",
|
712 |
-
"print(\"Actual Disease :\", y_test[0])"
|
713 |
-
]
|
714 |
-
},
|
715 |
-
{
|
716 |
-
"cell_type": "code",
|
717 |
-
"execution_count": 117,
|
718 |
-
"id": "786bfd1a",
|
719 |
-
"metadata": {},
|
720 |
-
"outputs": [
|
721 |
-
{
|
722 |
-
"name": "stdout",
|
723 |
-
"output_type": "stream",
|
724 |
-
"text": [
|
725 |
-
"predicted disease : [39]\n",
|
726 |
-
"Actual Disease : 39\n"
|
727 |
-
]
|
728 |
-
},
|
729 |
-
{
|
730 |
-
"name": "stderr",
|
731 |
-
"output_type": "stream",
|
732 |
-
"text": [
|
733 |
-
"C:\\Users\\naimat\\anaconda3\\lib\\site-packages\\sklearn\\base.py:465: UserWarning: X does not have valid feature names, but SVC was fitted with feature names\n",
|
734 |
-
" warnings.warn(\n"
|
735 |
-
]
|
736 |
-
}
|
737 |
-
],
|
738 |
-
"source": [
|
739 |
-
"# test 2:\n",
|
740 |
-
"print(\"predicted disease :\",svc.predict(X_test.iloc[100].values.reshape(1,-1)))\n",
|
741 |
-
"print(\"Actual Disease :\", y_test[100])"
|
742 |
-
]
|
743 |
-
},
|
744 |
-
{
|
745 |
-
"cell_type": "markdown",
|
746 |
-
"id": "9ce6884a",
|
747 |
-
"metadata": {},
|
748 |
-
"source": [
|
749 |
-
"# Recommendation System and Prediction"
|
750 |
-
]
|
751 |
-
},
|
752 |
-
{
|
753 |
-
"cell_type": "markdown",
|
754 |
-
"id": "f53f59b8",
|
755 |
-
"metadata": {},
|
756 |
-
"source": [
|
757 |
-
"# load database and use logic for recommendations"
|
758 |
-
]
|
759 |
-
},
|
760 |
-
{
|
761 |
-
"cell_type": "code",
|
762 |
-
"execution_count": 118,
|
763 |
-
"id": "767ed813",
|
764 |
-
"metadata": {},
|
765 |
-
"outputs": [],
|
766 |
-
"source": [
|
767 |
-
"sym_des = pd.read_csv(\"symtoms_df.csv\")\n",
|
768 |
-
"precautions = pd.read_csv(\"precautions_df.csv\")\n",
|
769 |
-
"workout = pd.read_csv(\"workout_df.csv\")\n",
|
770 |
-
"description = pd.read_csv(\"description.csv\")\n",
|
771 |
-
"medications = pd.read_csv('medications.csv')\n",
|
772 |
-
"diets = pd.read_csv(\"diets.csv\")"
|
773 |
-
]
|
774 |
-
},
|
775 |
-
{
|
776 |
-
"cell_type": "code",
|
777 |
-
"execution_count": 119,
|
778 |
-
"id": "6cb123a9",
|
779 |
-
"metadata": {},
|
780 |
-
"outputs": [],
|
781 |
-
"source": [
|
782 |
-
"#============================================================\n",
|
783 |
-
"# custome and helping functions\n",
|
784 |
-
"#==========================helper funtions================\n",
|
785 |
-
"def helper(dis):\n",
|
786 |
-
" desc = description[description['Disease'] == predicted_disease]['Description']\n",
|
787 |
-
" desc = \" \".join([w for w in desc])\n",
|
788 |
-
"\n",
|
789 |
-
" pre = precautions[precautions['Disease'] == dis][['Precaution_1', 'Precaution_2', 'Precaution_3', 'Precaution_4']]\n",
|
790 |
-
" pre = [col for col in pre.values]\n",
|
791 |
-
"\n",
|
792 |
-
" med = medications[medications['Disease'] == dis]['Medication']\n",
|
793 |
-
" med = [med for med in med.values]\n",
|
794 |
-
"\n",
|
795 |
-
" die = diets[diets['Disease'] == dis]['Diet']\n",
|
796 |
-
" die = [die for die in die.values]\n",
|
797 |
-
"\n",
|
798 |
-
" wrkout = workout[workout['disease'] == dis] ['workout']\n",
|
799 |
-
"\n",
|
800 |
-
"\n",
|
801 |
-
" return desc,pre,med,die,wrkout\n",
|
802 |
-
"\n",
|
803 |
-
"symptoms_dict = {'itching': 0, 'skin_rash': 1, 'nodal_skin_eruptions': 2, 'continuous_sneezing': 3, 'shivering': 4, 'chills': 5, 'joint_pain': 6, 'stomach_pain': 7, 'acidity': 8, 'ulcers_on_tongue': 9, 'muscle_wasting': 10, 'vomiting': 11, 'burning_micturition': 12, 'spotting_ urination': 13, 'fatigue': 14, 'weight_gain': 15, 'anxiety': 16, 'cold_hands_and_feets': 17, 'mood_swings': 18, 'weight_loss': 19, 'restlessness': 20, 'lethargy': 21, 'patches_in_throat': 22, 'irregular_sugar_level': 23, 'cough': 24, 'high_fever': 25, 'sunken_eyes': 26, 'breathlessness': 27, 'sweating': 28, 'dehydration': 29, 'indigestion': 30, 'headache': 31, 'yellowish_skin': 32, 'dark_urine': 33, 'nausea': 34, 'loss_of_appetite': 35, 'pain_behind_the_eyes': 36, 'back_pain': 37, 'constipation': 38, 'abdominal_pain': 39, 'diarrhoea': 40, 'mild_fever': 41, 'yellow_urine': 42, 'yellowing_of_eyes': 43, 'acute_liver_failure': 44, 'fluid_overload': 45, 'swelling_of_stomach': 46, 'swelled_lymph_nodes': 47, 'malaise': 48, 'blurred_and_distorted_vision': 49, 'phlegm': 50, 'throat_irritation': 51, 'redness_of_eyes': 52, 'sinus_pressure': 53, 'runny_nose': 54, 'congestion': 55, 'chest_pain': 56, 'weakness_in_limbs': 57, 'fast_heart_rate': 58, 'pain_during_bowel_movements': 59, 'pain_in_anal_region': 60, 'bloody_stool': 61, 'irritation_in_anus': 62, 'neck_pain': 63, 'dizziness': 64, 'cramps': 65, 'bruising': 66, 'obesity': 67, 'swollen_legs': 68, 'swollen_blood_vessels': 69, 'puffy_face_and_eyes': 70, 'enlarged_thyroid': 71, 'brittle_nails': 72, 'swollen_extremeties': 73, 'excessive_hunger': 74, 'extra_marital_contacts': 75, 'drying_and_tingling_lips': 76, 'slurred_speech': 77, 'knee_pain': 78, 'hip_joint_pain': 79, 'muscle_weakness': 80, 'stiff_neck': 81, 'swelling_joints': 82, 'movement_stiffness': 83, 'spinning_movements': 84, 'loss_of_balance': 85, 'unsteadiness': 86, 'weakness_of_one_body_side': 87, 'loss_of_smell': 88, 'bladder_discomfort': 89, 'foul_smell_of urine': 90, 'continuous_feel_of_urine': 91, 'passage_of_gases': 92, 'internal_itching': 93, 'toxic_look_(typhos)': 94, 'depression': 95, 'irritability': 96, 'muscle_pain': 97, 'altered_sensorium': 98, 'red_spots_over_body': 99, 'belly_pain': 100, 'abnormal_menstruation': 101, 'dischromic _patches': 102, 'watering_from_eyes': 103, 'increased_appetite': 104, 'polyuria': 105, 'family_history': 106, 'mucoid_sputum': 107, 'rusty_sputum': 108, 'lack_of_concentration': 109, 'visual_disturbances': 110, 'receiving_blood_transfusion': 111, 'receiving_unsterile_injections': 112, 'coma': 113, 'stomach_bleeding': 114, 'distention_of_abdomen': 115, 'history_of_alcohol_consumption': 116, 'fluid_overload.1': 117, 'blood_in_sputum': 118, 'prominent_veins_on_calf': 119, 'palpitations': 120, 'painful_walking': 121, 'pus_filled_pimples': 122, 'blackheads': 123, 'scurring': 124, 'skin_peeling': 125, 'silver_like_dusting': 126, 'small_dents_in_nails': 127, 'inflammatory_nails': 128, 'blister': 129, 'red_sore_around_nose': 130, 'yellow_crust_ooze': 131}\n",
|
804 |
-
"diseases_list = {15: 'Fungal infection', 4: 'Allergy', 16: 'GERD', 9: 'Chronic cholestasis', 14: 'Drug Reaction', 33: 'Peptic ulcer diseae', 1: 'AIDS', 12: 'Diabetes ', 17: 'Gastroenteritis', 6: 'Bronchial Asthma', 23: 'Hypertension ', 30: 'Migraine', 7: 'Cervical spondylosis', 32: 'Paralysis (brain hemorrhage)', 28: 'Jaundice', 29: 'Malaria', 8: 'Chicken pox', 11: 'Dengue', 37: 'Typhoid', 40: 'hepatitis A', 19: 'Hepatitis B', 20: 'Hepatitis C', 21: 'Hepatitis D', 22: 'Hepatitis E', 3: 'Alcoholic hepatitis', 36: 'Tuberculosis', 10: 'Common Cold', 34: 'Pneumonia', 13: 'Dimorphic hemmorhoids(piles)', 18: 'Heart attack', 39: 'Varicose veins', 26: 'Hypothyroidism', 24: 'Hyperthyroidism', 25: 'Hypoglycemia', 31: 'Osteoarthristis', 5: 'Arthritis', 0: '(vertigo) Paroymsal Positional Vertigo', 2: 'Acne', 38: 'Urinary tract infection', 35: 'Psoriasis', 27: 'Impetigo'}\n",
|
805 |
-
"\n",
|
806 |
-
"# Model Prediction function\n",
|
807 |
-
"def get_predicted_value(patient_symptoms):\n",
|
808 |
-
" input_vector = np.zeros(len(symptoms_dict))\n",
|
809 |
-
" for item in patient_symptoms:\n",
|
810 |
-
" input_vector[symptoms_dict[item]] = 1\n",
|
811 |
-
" return diseases_list[svc.predict([input_vector])[0]]"
|
812 |
-
]
|
813 |
-
},
|
814 |
-
{
|
815 |
-
"cell_type": "code",
|
816 |
-
"execution_count": 121,
|
817 |
-
"id": "a36b1e93",
|
818 |
-
"metadata": {},
|
819 |
-
"outputs": [
|
820 |
-
{
|
821 |
-
"name": "stdout",
|
822 |
-
"output_type": "stream",
|
823 |
-
"text": [
|
824 |
-
"Enter your symptoms.......itching,skin_rash,nodal_skin_eruptions\n",
|
825 |
-
"=================predicted disease============\n",
|
826 |
-
"Fungal infection\n",
|
827 |
-
"=================description==================\n",
|
828 |
-
"Fungal infection is a common skin condition caused by fungi.\n",
|
829 |
-
"=================precautions==================\n",
|
830 |
-
"1 : bath twice\n",
|
831 |
-
"2 : use detol or neem in bathing water\n",
|
832 |
-
"3 : keep infected area dry\n",
|
833 |
-
"4 : use clean cloths\n",
|
834 |
-
"=================medications==================\n",
|
835 |
-
"5 : ['Antifungal Cream', 'Fluconazole', 'Terbinafine', 'Clotrimazole', 'Ketoconazole']\n",
|
836 |
-
"=================workout==================\n",
|
837 |
-
"6 : Avoid sugary foods\n",
|
838 |
-
"7 : Consume probiotics\n",
|
839 |
-
"8 : Increase intake of garlic\n",
|
840 |
-
"9 : Include yogurt in diet\n",
|
841 |
-
"10 : Limit processed foods\n",
|
842 |
-
"11 : Stay hydrated\n",
|
843 |
-
"12 : Consume green tea\n",
|
844 |
-
"13 : Eat foods rich in zinc\n",
|
845 |
-
"14 : Include turmeric in diet\n",
|
846 |
-
"15 : Eat fruits and vegetables\n",
|
847 |
-
"=================diets==================\n",
|
848 |
-
"16 : ['Antifungal Diet', 'Probiotics', 'Garlic', 'Coconut oil', 'Turmeric']\n"
|
849 |
-
]
|
850 |
-
},
|
851 |
-
{
|
852 |
-
"name": "stderr",
|
853 |
-
"output_type": "stream",
|
854 |
-
"text": [
|
855 |
-
"C:\\Users\\naimat\\anaconda3\\lib\\site-packages\\sklearn\\base.py:465: UserWarning: X does not have valid feature names, but SVC was fitted with feature names\n",
|
856 |
-
" warnings.warn(\n"
|
857 |
-
]
|
858 |
-
}
|
859 |
-
],
|
860 |
-
"source": [
|
861 |
-
"# Test 1\n",
|
862 |
-
"# Split the user's input into a list of symptoms (assuming they are comma-separated) # itching,skin_rash,nodal_skin_eruptions\n",
|
863 |
-
"symptoms = input(\"Enter your symptoms.......\")\n",
|
864 |
-
"user_symptoms = [s.strip() for s in symptoms.split(',')]\n",
|
865 |
-
"# Remove any extra characters, if any\n",
|
866 |
-
"user_symptoms = [symptom.strip(\"[]' \") for symptom in user_symptoms]\n",
|
867 |
-
"predicted_disease = get_predicted_value(user_symptoms)\n",
|
868 |
-
"\n",
|
869 |
-
"desc, pre, med, die, wrkout = helper(predicted_disease)\n",
|
870 |
-
"\n",
|
871 |
-
"print(\"=================predicted disease============\")\n",
|
872 |
-
"print(predicted_disease)\n",
|
873 |
-
"print(\"=================description==================\")\n",
|
874 |
-
"print(desc)\n",
|
875 |
-
"print(\"=================precautions==================\")\n",
|
876 |
-
"i = 1\n",
|
877 |
-
"for p_i in pre[0]:\n",
|
878 |
-
" print(i, \": \", p_i)\n",
|
879 |
-
" i += 1\n",
|
880 |
-
"\n",
|
881 |
-
"print(\"=================medications==================\")\n",
|
882 |
-
"for m_i in med:\n",
|
883 |
-
" print(i, \": \", m_i)\n",
|
884 |
-
" i += 1\n",
|
885 |
-
"\n",
|
886 |
-
"print(\"=================workout==================\")\n",
|
887 |
-
"for w_i in wrkout:\n",
|
888 |
-
" print(i, \": \", w_i)\n",
|
889 |
-
" i += 1\n",
|
890 |
-
"\n",
|
891 |
-
"print(\"=================diets==================\")\n",
|
892 |
-
"for d_i in die:\n",
|
893 |
-
" print(i, \": \", d_i)\n",
|
894 |
-
" i += 1\n"
|
895 |
-
]
|
896 |
-
},
|
897 |
-
{
|
898 |
-
"cell_type": "code",
|
899 |
-
"execution_count": 122,
|
900 |
-
"id": "2d7ee79b",
|
901 |
-
"metadata": {},
|
902 |
-
"outputs": [
|
903 |
-
{
|
904 |
-
"name": "stdout",
|
905 |
-
"output_type": "stream",
|
906 |
-
"text": [
|
907 |
-
"Enter your symptoms.......yellow_crust_ooze,red_sore_around_nose,small_dents_in_nails,inflammatory_nails,blister\n",
|
908 |
-
"=================predicted disease============\n",
|
909 |
-
"Impetigo\n",
|
910 |
-
"=================description==================\n",
|
911 |
-
"Impetigo is a highly contagious skin infection causing red sores that can break open.\n",
|
912 |
-
"=================precautions==================\n",
|
913 |
-
"1 : soak affected area in warm water\n",
|
914 |
-
"2 : use antibiotics\n",
|
915 |
-
"3 : remove scabs with wet compressed cloth\n",
|
916 |
-
"4 : consult doctor\n",
|
917 |
-
"=================medications==================\n",
|
918 |
-
"5 : ['Topical antibiotics', 'Oral antibiotics', 'Antiseptics', 'Ointments', 'Warm compresses']\n",
|
919 |
-
"=================workout==================\n",
|
920 |
-
"6 : Maintain good hygiene\n",
|
921 |
-
"7 : Stay hydrated\n",
|
922 |
-
"8 : Consume nutrient-rich foods\n",
|
923 |
-
"9 : Limit sugary foods and beverages\n",
|
924 |
-
"10 : Include foods rich in vitamin C\n",
|
925 |
-
"11 : Consult a healthcare professional\n",
|
926 |
-
"12 : Follow medical recommendations\n",
|
927 |
-
"13 : Avoid scratching\n",
|
928 |
-
"14 : Take prescribed antibiotics\n",
|
929 |
-
"15 : Practice wound care\n",
|
930 |
-
"=================diets==================\n",
|
931 |
-
"16 : ['Impetigo Diet', 'Antibiotic treatment', 'Fruits and vegetables', 'Hydration', 'Protein-rich foods']\n"
|
932 |
-
]
|
933 |
-
},
|
934 |
-
{
|
935 |
-
"name": "stderr",
|
936 |
-
"output_type": "stream",
|
937 |
-
"text": [
|
938 |
-
"C:\\Users\\naimat\\anaconda3\\lib\\site-packages\\sklearn\\base.py:465: UserWarning: X does not have valid feature names, but SVC was fitted with feature names\n",
|
939 |
-
" warnings.warn(\n"
|
940 |
-
]
|
941 |
-
}
|
942 |
-
],
|
943 |
-
"source": [
|
944 |
-
"# Test 1\n",
|
945 |
-
"# Split the user's input into a list of symptoms (assuming they are comma-separated) # yellow_crust_ooze,red_sore_around_nose,small_dents_in_nails,inflammatory_nails,blister\n",
|
946 |
-
"symptoms = input(\"Enter your symptoms.......\")\n",
|
947 |
-
"user_symptoms = [s.strip() for s in symptoms.split(',')]\n",
|
948 |
-
"# Remove any extra characters, if any\n",
|
949 |
-
"user_symptoms = [symptom.strip(\"[]' \") for symptom in user_symptoms]\n",
|
950 |
-
"predicted_disease = get_predicted_value(user_symptoms)\n",
|
951 |
-
"\n",
|
952 |
-
"desc, pre, med, die, wrkout = helper(predicted_disease)\n",
|
953 |
-
"\n",
|
954 |
-
"print(\"=================predicted disease============\")\n",
|
955 |
-
"print(predicted_disease)\n",
|
956 |
-
"print(\"=================description==================\")\n",
|
957 |
-
"print(desc)\n",
|
958 |
-
"print(\"=================precautions==================\")\n",
|
959 |
-
"i = 1\n",
|
960 |
-
"for p_i in pre[0]:\n",
|
961 |
-
" print(i, \": \", p_i)\n",
|
962 |
-
" i += 1\n",
|
963 |
-
"\n",
|
964 |
-
"print(\"=================medications==================\")\n",
|
965 |
-
"for m_i in med:\n",
|
966 |
-
" print(i, \": \", m_i)\n",
|
967 |
-
" i += 1\n",
|
968 |
-
"\n",
|
969 |
-
"print(\"=================workout==================\")\n",
|
970 |
-
"for w_i in wrkout:\n",
|
971 |
-
" print(i, \": \", w_i)\n",
|
972 |
-
" i += 1\n",
|
973 |
-
"\n",
|
974 |
-
"print(\"=================diets==================\")\n",
|
975 |
-
"for d_i in die:\n",
|
976 |
-
" print(i, \": \", d_i)\n",
|
977 |
-
" i += 1\n"
|
978 |
-
]
|
979 |
-
},
|
980 |
-
{
|
981 |
-
"cell_type": "code",
|
982 |
-
"execution_count": 123,
|
983 |
-
"id": "a8d5df35",
|
984 |
-
"metadata": {},
|
985 |
-
"outputs": [
|
986 |
-
{
|
987 |
-
"name": "stdout",
|
988 |
-
"output_type": "stream",
|
989 |
-
"text": [
|
990 |
-
"1.3.2\n"
|
991 |
-
]
|
992 |
-
}
|
993 |
-
],
|
994 |
-
"source": [
|
995 |
-
"# let's use pycharm flask app\n",
|
996 |
-
"# but install this version in pycharm\n",
|
997 |
-
"import sklearn\n",
|
998 |
-
"print(sklearn.__version__)"
|
999 |
-
]
|
1000 |
-
},
|
1001 |
-
{
|
1002 |
-
"cell_type": "code",
|
1003 |
-
"execution_count": null,
|
1004 |
-
"id": "97dfb973",
|
1005 |
-
"metadata": {},
|
1006 |
-
"outputs": [],
|
1007 |
-
"source": []
|
1008 |
-
}
|
1009 |
-
],
|
1010 |
-
"metadata": {
|
1011 |
-
"kernelspec": {
|
1012 |
-
"display_name": "Python 3 (ipykernel)",
|
1013 |
-
"language": "python",
|
1014 |
-
"name": "python3"
|
1015 |
-
},
|
1016 |
-
"language_info": {
|
1017 |
-
"codemirror_mode": {
|
1018 |
-
"name": "ipython",
|
1019 |
-
"version": 3
|
1020 |
-
},
|
1021 |
-
"file_extension": ".py",
|
1022 |
-
"mimetype": "text/x-python",
|
1023 |
-
"name": "python",
|
1024 |
-
"nbconvert_exporter": "python",
|
1025 |
-
"pygments_lexer": "ipython3",
|
1026 |
-
"version": "3.9.12"
|
1027 |
-
}
|
1028 |
-
},
|
1029 |
-
"nbformat": 4,
|
1030 |
-
"nbformat_minor": 5
|
1031 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|