File size: 3,472 Bytes
4931192 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
language:
- ar
license: mit
tags:
- ara
- generated_from_trainer
datasets:
- SDA_CLEAN_NAJDI
model-index:
- name: SpeechT5 TTS
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SpeechT5 TTS
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the SDA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4853
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 40000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.5703 | 1.49 | 1000 | 0.5289 |
| 0.541 | 2.98 | 2000 | 0.5131 |
| 0.5487 | 4.46 | 3000 | 0.5059 |
| 0.5232 | 5.95 | 4000 | 0.5011 |
| 0.5295 | 7.44 | 5000 | 0.4979 |
| 0.5257 | 8.93 | 6000 | 0.4970 |
| 0.5091 | 10.42 | 7000 | 0.4905 |
| 0.5141 | 11.9 | 8000 | 0.4893 |
| 0.5033 | 13.39 | 9000 | 0.4865 |
| 0.507 | 14.88 | 10000 | 0.4850 |
| 0.502 | 16.37 | 11000 | 0.4830 |
| 0.497 | 17.86 | 12000 | 0.4823 |
| 0.4974 | 19.35 | 13000 | 0.4801 |
| 0.4993 | 20.83 | 14000 | 0.4794 |
| 0.496 | 22.32 | 15000 | 0.4814 |
| 0.4845 | 23.81 | 16000 | 0.4780 |
| 0.4977 | 25.3 | 17000 | 0.4775 |
| 0.4888 | 26.79 | 18000 | 0.4780 |
| 0.4773 | 28.27 | 19000 | 0.4792 |
| 0.4914 | 29.76 | 20000 | 0.4817 |
| 0.4864 | 31.25 | 21000 | 0.4775 |
| 0.486 | 32.74 | 22000 | 0.4773 |
| 0.4884 | 34.23 | 23000 | 0.4835 |
| 0.4856 | 35.71 | 24000 | 0.4788 |
| 0.4814 | 37.2 | 25000 | 0.4811 |
| 0.4831 | 38.69 | 26000 | 0.4814 |
| 0.4732 | 40.18 | 27000 | 0.4816 |
| 0.4846 | 41.67 | 28000 | 0.4812 |
| 0.4731 | 43.15 | 29000 | 0.4843 |
| 0.4772 | 44.64 | 30000 | 0.4830 |
| 0.4793 | 46.13 | 31000 | 0.4834 |
| 0.4736 | 47.62 | 32000 | 0.4834 |
| 0.4798 | 49.11 | 33000 | 0.4826 |
| 0.4744 | 50.6 | 34000 | 0.4841 |
| 0.4784 | 52.08 | 35000 | 0.4844 |
| 0.4743 | 53.57 | 36000 | 0.4851 |
| 0.4779 | 55.06 | 37000 | 0.4854 |
| 0.4719 | 56.55 | 38000 | 0.4854 |
| 0.4825 | 58.04 | 39000 | 0.4856 |
| 0.4805 | 59.52 | 40000 | 0.4853 |
### Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.0
- Tokenizers 0.13.3
|