Upload README.md
Browse files
README.md
CHANGED
@@ -4,4 +4,58 @@ pipeline_tag: image-classification
|
|
4 |
tags:
|
5 |
- pytorch
|
6 |
- vision
|
7 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
tags:
|
5 |
- pytorch
|
6 |
- vision
|
7 |
+
---
|
8 |
+
|
9 |
+
This model is the product of curiosity—imagine a choice that allows you to label anime images!
|
10 |
+
|
11 |
+
**Disclaimer**: The model has been trained on an entirely new dataset. Predictions made by the model *prior to 2023 might be off*. It's advisable to fine-tune the model according to your specific use case.
|
12 |
+
|
13 |
+
# Quick setup guide:
|
14 |
+
|
15 |
+
```python
|
16 |
+
from transformers.modeling_outputs import ImageClassifierOutput
|
17 |
+
from transformers import ViTImageProcessor, ViTForImageClassification
|
18 |
+
import torch
|
19 |
+
from PIL import Image
|
20 |
+
|
21 |
+
model_name_or_path = "vit-anime-base/"
|
22 |
+
processor = ViTImageProcessor.from_pretrained(model_name_or_path)
|
23 |
+
model = ViTForImageClassification.from_pretrained(model_name_or_path)
|
24 |
+
threshold = 0.3
|
25 |
+
|
26 |
+
device = torch.device('cuda')
|
27 |
+
|
28 |
+
image = Image.open(YOUR_IMAGE_PATH)
|
29 |
+
|
30 |
+
inputs = processor(image, return_tensors='pt')
|
31 |
+
|
32 |
+
model.to(device=device)
|
33 |
+
model.eval()
|
34 |
+
|
35 |
+
|
36 |
+
with torch.no_grad():
|
37 |
+
pixel_values = inputs['pixel_values'].to(device=device)
|
38 |
+
|
39 |
+
outputs : ImageClassifierOutput = model(pixel_values=pixel_values)
|
40 |
+
|
41 |
+
logits = outputs.logits # The raw scores before applying any activation
|
42 |
+
sigmoid = torch.nn.Sigmoid() # Sigmoid function to convert logits to probabilities
|
43 |
+
logits : torch.FloatTensor = sigmoid(logits) # Applying sigmoid activation
|
44 |
+
|
45 |
+
predictions = [] # List to store predictions
|
46 |
+
|
47 |
+
for idx, p in enumerate(logits[0]):
|
48 |
+
if p > threshold: # Applying a threshold of 0.3 to consider a class prediction
|
49 |
+
predictions.append((model.config.id2label[idx], p.item())) # Storing class label and probability
|
50 |
+
|
51 |
+
for tag in predictions:
|
52 |
+
print(tag)
|
53 |
+
|
54 |
+
|
55 |
+
```
|
56 |
+
|
57 |
+
Why the `Sigmoid`?
|
58 |
+
- Sigmoid turns boring scores into fun probabilities, so you can use thresholds and find more cool tags.
|
59 |
+
- It's like a wizard turning regular stuff into magic potions!
|
60 |
+
|
61 |
+
[Training guide](/training_guide.md)
|