Commit
7603529
1 Parent(s): 79d119c

update readme.md

Browse files
Files changed (1) hide show
  1. README.md +65 -1
README.md CHANGED
@@ -14,11 +14,75 @@ tags:
14
  **For more info please refer to this blog: [ARM | Arabic Reranker Model](www.omarai.me).**
15
 
16
  ✨ This model is designed specifically for Arabic language reranking tasks, optimized to handle queries and passages with precision.
17
- ✨ Unlike embedding models, which generate vector representations, this reranker directly evaluates the similarity between a question and a document, outputting a relevance score.
 
 
18
  ✨ Trained on a combination of positive and hard negative query-passage pairs, it excels in identifying the most relevant results.
 
19
  ✨ The output score can be transformed into a [0, 1] range using a sigmoid function, providing a clear and interpretable measure of relevance.
20
 
21
 
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
 
 
14
  **For more info please refer to this blog: [ARM | Arabic Reranker Model](www.omarai.me).**
15
 
16
  ✨ This model is designed specifically for Arabic language reranking tasks, optimized to handle queries and passages with precision.
17
+
18
+ ✨ Unlike embedding models, which generate vector representations, this reranker directly evaluates the similarity between a question and a document, outputting a relevance score.
19
+
20
  ✨ Trained on a combination of positive and hard negative query-passage pairs, it excels in identifying the most relevant results.
21
+
22
  ✨ The output score can be transformed into a [0, 1] range using a sigmoid function, providing a clear and interpretable measure of relevance.
23
 
24
 
25
 
26
+ ## Usage
27
+ ### Using sentence-transformers
28
+
29
+ ```
30
+ pip installsentence-transformers
31
+ ```
32
+ ```python
33
+ from sentence_transformers import CrossEncoder
34
+
35
+ # Load the cross-encoder model
36
+
37
+ # Define a query and a set of candidates with varying degrees of relevance
38
+ query = "تطبيقات الذكاء الاصطناعي تُستخدم في مختلف المجالات لتحسين الكفاءة."
39
+
40
+ # Candidates with varying relevance to the query
41
+ candidates = [
42
+ "الذكاء الاصطناعي يساهم في تحسين الإنتاجية في الصناعات المختلفة.", # Highly relevant
43
+ "نماذج التعلم الآلي يمكنها التعرف على الأنماط في مجموعات البيانات الكبيرة.", # Moderately relevant
44
+ "الذكاء الاصطناعي يساعد الأطباء في تحليل الصور الطبية بشكل أفضل.", # Somewhat relevant
45
+ "تستخدم الحيوانات التمويه كوسيلة للهروب من الحيوانات المفترسة.", # Irrelevant
46
+ ]
47
+
48
+ # Create pairs of (query, candidate) for each candidate
49
+ query_candidate_pairs = [(query, candidate) for candidate in candidates]
50
+
51
+ # Get relevance scores from the model
52
+ scores = model.predict(query_candidate_pairs)
53
+
54
+ # Combine candidates with their scores and sort them by score in descending order (higher score = higher relevance)
55
+ ranked_candidates = sorted(zip(candidates, scores), key=lambda x: x[1], reverse=True)
56
+
57
+ # Output the ranked candidates with their scores
58
+ print("Ranked candidates based on relevance to the query:")
59
+ for i, (candidate, score) in enumerate(ranked_candidates, 1):
60
+ print(f"Rank {i}:")
61
+ print(f"Candidate: {candidate}")
62
+ print(f"Score: {score}\n")
63
+ ```
64
+ ## Evaluation
65
+
66
+
67
+
68
+
69
+ ## <span style="color:blue">Acknowledgments</span>
70
+
71
+ The author would like to thank Prince Sultan University for their invaluable support in this project. Their contributions and resources have been instrumental in the development and fine-tuning of these models.
72
+
73
+
74
+ ```markdown
75
+ ## Citation
76
+
77
+ If you use the GATE, please cite it as follows:
78
+
79
+ @misc{nacar2025ARM,
80
+ title={ARM, Arabic Reranker Model},
81
+ author={Omer Nacar},
82
+ year={2025},
83
+ url={https://huggingface.co/Omartificial-Intelligence-Space/ARA-Reranker-V1},
84
+ }
85
+
86
+
87
 
88