Omartificial-Intelligence-Space
commited on
Update readme.md
Browse files
README.md
CHANGED
@@ -132,38 +132,23 @@ model-index:
|
|
132 |
name: Spearman Max
|
133 |
---
|
134 |
|
135 |
-
#
|
136 |
|
137 |
-
This is a
|
138 |
|
139 |
## Model Details
|
140 |
|
141 |
### Model Description
|
142 |
- **Model Type:** Sentence Transformer
|
143 |
-
- **Base model:** [Omartificial-Intelligence-Space/
|
144 |
- **Maximum Sequence Length:** 512 tokens
|
145 |
- **Output Dimensionality:** 768 tokens
|
146 |
- **Similarity Function:** Cosine Similarity
|
147 |
- **Training Datasets:**
|
148 |
-
- all-nli
|
149 |
- [sts](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb)
|
150 |
- **Language:** ar
|
151 |
-
<!-- - **License:** Unknown -->
|
152 |
|
153 |
-
### Model Sources
|
154 |
-
|
155 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
156 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
157 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
158 |
-
|
159 |
-
### Full Model Architecture
|
160 |
-
|
161 |
-
```
|
162 |
-
SentenceTransformer(
|
163 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
164 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
165 |
-
)
|
166 |
-
```
|
167 |
|
168 |
## Usage
|
169 |
|
@@ -180,7 +165,7 @@ Then you can load this model and run inference.
|
|
180 |
from sentence_transformers import SentenceTransformer
|
181 |
|
182 |
# Download from the 🤗 Hub
|
183 |
-
model = SentenceTransformer("Omartificial-Intelligence-Space/
|
184 |
# Run inference
|
185 |
sentences = [
|
186 |
'الكلب البني مستلقي على جانبه على سجادة بيج، مع جسم أخضر في المقدمة.',
|
@@ -197,29 +182,7 @@ print(similarities.shape)
|
|
197 |
# [3, 3]
|
198 |
```
|
199 |
|
200 |
-
<!--
|
201 |
-
### Direct Usage (Transformers)
|
202 |
-
|
203 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
204 |
-
|
205 |
-
</details>
|
206 |
-
-->
|
207 |
-
|
208 |
-
<!--
|
209 |
-
### Downstream Usage (Sentence Transformers)
|
210 |
-
|
211 |
-
You can finetune this model on your own dataset.
|
212 |
-
|
213 |
-
<details><summary>Click to expand</summary>
|
214 |
-
|
215 |
-
</details>
|
216 |
-
-->
|
217 |
|
218 |
-
<!--
|
219 |
-
### Out-of-Scope Use
|
220 |
-
|
221 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
222 |
-
-->
|
223 |
|
224 |
## Evaluation
|
225 |
|
@@ -259,285 +222,3 @@ You can finetune this model on your own dataset.
|
|
259 |
| pearson_max | 0.7923 |
|
260 |
| spearman_max | 0.7947 |
|
261 |
|
262 |
-
<!--
|
263 |
-
## Bias, Risks and Limitations
|
264 |
-
|
265 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
266 |
-
-->
|
267 |
-
|
268 |
-
<!--
|
269 |
-
### Recommendations
|
270 |
-
|
271 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
272 |
-
-->
|
273 |
-
|
274 |
-
## Training Details
|
275 |
-
|
276 |
-
### Training Datasets
|
277 |
-
|
278 |
-
#### all-nli
|
279 |
-
|
280 |
-
* Dataset: all-nli
|
281 |
-
* Size: 942,069 training samples
|
282 |
-
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
|
283 |
-
* Approximate statistics based on the first 1000 samples:
|
284 |
-
| | premise | hypothesis | label |
|
285 |
-
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------|
|
286 |
-
| type | string | string | int |
|
287 |
-
| details | <ul><li>min: 5 tokens</li><li>mean: 14.09 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.28 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
|
288 |
-
* Samples:
|
289 |
-
| premise | hypothesis | label |
|
290 |
-
|:-----------------------------------------------|:--------------------------------------------|:---------------|
|
291 |
-
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص يقوم بتدريب حصانه للمنافسة</code> | <code>1</code> |
|
292 |
-
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في مطعم، يطلب عجة.</code> | <code>2</code> |
|
293 |
-
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>0</code> |
|
294 |
-
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
295 |
-
|
296 |
-
#### sts
|
297 |
-
|
298 |
-
* Dataset: [sts](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb) at [f5a6f89](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb/tree/f5a6f89da460d307eff3acbbfcb62d0705cdbbb5)
|
299 |
-
* Size: 5,749 training samples
|
300 |
-
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
301 |
-
* Approximate statistics based on the first 1000 samples:
|
302 |
-
| | sentence1 | sentence2 | score |
|
303 |
-
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
304 |
-
| type | string | string | float |
|
305 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 7.46 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.36 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
|
306 |
-
* Samples:
|
307 |
-
| sentence1 | sentence2 | score |
|
308 |
-
|:-----------------------------------------------|:--------------------------------------------------------|:------------------|
|
309 |
-
| <code>طائرة ستقلع</code> | <code>طائرة جوية ستقلع</code> | <code>1.0</code> |
|
310 |
-
| <code>رجل يعزف على ناي كبير</code> | <code>رجل يعزف على الناي.</code> | <code>0.76</code> |
|
311 |
-
| <code>رجل ينشر الجبن الممزق على البيتزا</code> | <code>رجل ينشر الجبن الممزق على بيتزا غير مطبوخة</code> | <code>0.76</code> |
|
312 |
-
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
313 |
-
```json
|
314 |
-
{
|
315 |
-
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
316 |
-
}
|
317 |
-
```
|
318 |
-
|
319 |
-
### Evaluation Datasets
|
320 |
-
|
321 |
-
#### all-nli
|
322 |
-
|
323 |
-
* Dataset: all-nli
|
324 |
-
* Size: 1,000 evaluation samples
|
325 |
-
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
|
326 |
-
* Approximate statistics based on the first 1000 samples:
|
327 |
-
| | premise | hypothesis | label |
|
328 |
-
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------|
|
329 |
-
| type | string | string | int |
|
330 |
-
| details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.11 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>0: ~33.10%</li><li>1: ~33.30%</li><li>2: ~33.60%</li></ul> |
|
331 |
-
* Samples:
|
332 |
-
| premise | hypothesis | label |
|
333 |
-
|:------------------------------------------------|:------------------------------------------------------------------------------|:---------------|
|
334 |
-
| <code>امرأتان يتعانقان بينما يحملان طرود</code> | <code>الأخوات يعانقون بعضهم لوداعاً بينما يحملون حزمة بعد تناول الغداء</code> | <code>1</code> |
|
335 |
-
| <code>امرأتان يتعانقان بينما يحملان حزمة</code> | <code>إمرأتان يحملان حزمة</code> | <code>0</code> |
|
336 |
-
| <code>امرأتان يتعانقان بينما يحملان حزمة</code> | <code>الرجال يتشاجرون خارج مطعم</code> | <code>2</code> |
|
337 |
-
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
338 |
-
|
339 |
-
#### sts
|
340 |
-
|
341 |
-
* Dataset: [sts](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb) at [f5a6f89](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb/tree/f5a6f89da460d307eff3acbbfcb62d0705cdbbb5)
|
342 |
-
* Size: 1,500 evaluation samples
|
343 |
-
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
344 |
-
* Approximate statistics based on the first 1000 samples:
|
345 |
-
| | sentence1 | sentence2 | score |
|
346 |
-
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
347 |
-
| type | string | string | float |
|
348 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 12.55 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.49 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
|
349 |
-
* Samples:
|
350 |
-
| sentence1 | sentence2 | score |
|
351 |
-
|:--------------------------------------|:---------------------------------------|:------------------|
|
352 |
-
| <code>رجل يرتدي قبعة صلبة يرقص</code> | <code>رجل يرتدي قبعة صلبة يرقص.</code> | <code>1.0</code> |
|
353 |
-
| <code>طفل صغير يركب حصاناً.</code> | <code>طفل يركب حصاناً.</code> | <code>0.95</code> |
|
354 |
-
| <code>رجل يطعم فأراً لأفعى</code> | <code>الرجل يطعم الفأر للثعبان.</code> | <code>1.0</code> |
|
355 |
-
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
356 |
-
```json
|
357 |
-
{
|
358 |
-
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
359 |
-
}
|
360 |
-
```
|
361 |
-
|
362 |
-
### Training Hyperparameters
|
363 |
-
#### Non-Default Hyperparameters
|
364 |
-
|
365 |
-
- `eval_strategy`: steps
|
366 |
-
- `per_device_train_batch_size`: 16
|
367 |
-
- `per_device_eval_batch_size`: 16
|
368 |
-
- `num_train_epochs`: 1
|
369 |
-
- `warmup_ratio`: 0.1
|
370 |
-
- `fp16`: True
|
371 |
-
- `multi_dataset_batch_sampler`: round_robin
|
372 |
-
|
373 |
-
#### All Hyperparameters
|
374 |
-
<details><summary>Click to expand</summary>
|
375 |
-
|
376 |
-
- `overwrite_output_dir`: False
|
377 |
-
- `do_predict`: False
|
378 |
-
- `eval_strategy`: steps
|
379 |
-
- `prediction_loss_only`: True
|
380 |
-
- `per_device_train_batch_size`: 16
|
381 |
-
- `per_device_eval_batch_size`: 16
|
382 |
-
- `per_gpu_train_batch_size`: None
|
383 |
-
- `per_gpu_eval_batch_size`: None
|
384 |
-
- `gradient_accumulation_steps`: 1
|
385 |
-
- `eval_accumulation_steps`: None
|
386 |
-
- `learning_rate`: 5e-05
|
387 |
-
- `weight_decay`: 0.0
|
388 |
-
- `adam_beta1`: 0.9
|
389 |
-
- `adam_beta2`: 0.999
|
390 |
-
- `adam_epsilon`: 1e-08
|
391 |
-
- `max_grad_norm`: 1.0
|
392 |
-
- `num_train_epochs`: 1
|
393 |
-
- `max_steps`: -1
|
394 |
-
- `lr_scheduler_type`: linear
|
395 |
-
- `lr_scheduler_kwargs`: {}
|
396 |
-
- `warmup_ratio`: 0.1
|
397 |
-
- `warmup_steps`: 0
|
398 |
-
- `log_level`: passive
|
399 |
-
- `log_level_replica`: warning
|
400 |
-
- `log_on_each_node`: True
|
401 |
-
- `logging_nan_inf_filter`: True
|
402 |
-
- `save_safetensors`: True
|
403 |
-
- `save_on_each_node`: False
|
404 |
-
- `save_only_model`: False
|
405 |
-
- `restore_callback_states_from_checkpoint`: False
|
406 |
-
- `no_cuda`: False
|
407 |
-
- `use_cpu`: False
|
408 |
-
- `use_mps_device`: False
|
409 |
-
- `seed`: 42
|
410 |
-
- `data_seed`: None
|
411 |
-
- `jit_mode_eval`: False
|
412 |
-
- `use_ipex`: False
|
413 |
-
- `bf16`: False
|
414 |
-
- `fp16`: True
|
415 |
-
- `fp16_opt_level`: O1
|
416 |
-
- `half_precision_backend`: auto
|
417 |
-
- `bf16_full_eval`: False
|
418 |
-
- `fp16_full_eval`: False
|
419 |
-
- `tf32`: None
|
420 |
-
- `local_rank`: 0
|
421 |
-
- `ddp_backend`: None
|
422 |
-
- `tpu_num_cores`: None
|
423 |
-
- `tpu_metrics_debug`: False
|
424 |
-
- `debug`: []
|
425 |
-
- `dataloader_drop_last`: False
|
426 |
-
- `dataloader_num_workers`: 0
|
427 |
-
- `dataloader_prefetch_factor`: None
|
428 |
-
- `past_index`: -1
|
429 |
-
- `disable_tqdm`: False
|
430 |
-
- `remove_unused_columns`: True
|
431 |
-
- `label_names`: None
|
432 |
-
- `load_best_model_at_end`: False
|
433 |
-
- `ignore_data_skip`: False
|
434 |
-
- `fsdp`: []
|
435 |
-
- `fsdp_min_num_params`: 0
|
436 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
437 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
438 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
439 |
-
- `deepspeed`: None
|
440 |
-
- `label_smoothing_factor`: 0.0
|
441 |
-
- `optim`: adamw_torch
|
442 |
-
- `optim_args`: None
|
443 |
-
- `adafactor`: False
|
444 |
-
- `group_by_length`: False
|
445 |
-
- `length_column_name`: length
|
446 |
-
- `ddp_find_unused_parameters`: None
|
447 |
-
- `ddp_bucket_cap_mb`: None
|
448 |
-
- `ddp_broadcast_buffers`: False
|
449 |
-
- `dataloader_pin_memory`: True
|
450 |
-
- `dataloader_persistent_workers`: False
|
451 |
-
- `skip_memory_metrics`: True
|
452 |
-
- `use_legacy_prediction_loop`: False
|
453 |
-
- `push_to_hub`: False
|
454 |
-
- `resume_from_checkpoint`: None
|
455 |
-
- `hub_model_id`: None
|
456 |
-
- `hub_strategy`: every_save
|
457 |
-
- `hub_private_repo`: False
|
458 |
-
- `hub_always_push`: False
|
459 |
-
- `gradient_checkpointing`: False
|
460 |
-
- `gradient_checkpointing_kwargs`: None
|
461 |
-
- `include_inputs_for_metrics`: False
|
462 |
-
- `eval_do_concat_batches`: True
|
463 |
-
- `fp16_backend`: auto
|
464 |
-
- `push_to_hub_model_id`: None
|
465 |
-
- `push_to_hub_organization`: None
|
466 |
-
- `mp_parameters`:
|
467 |
-
- `auto_find_batch_size`: False
|
468 |
-
- `full_determinism`: False
|
469 |
-
- `torchdynamo`: None
|
470 |
-
- `ray_scope`: last
|
471 |
-
- `ddp_timeout`: 1800
|
472 |
-
- `torch_compile`: False
|
473 |
-
- `torch_compile_backend`: None
|
474 |
-
- `torch_compile_mode`: None
|
475 |
-
- `dispatch_batches`: None
|
476 |
-
- `split_batches`: None
|
477 |
-
- `include_tokens_per_second`: False
|
478 |
-
- `include_num_input_tokens_seen`: False
|
479 |
-
- `neftune_noise_alpha`: None
|
480 |
-
- `optim_target_modules`: None
|
481 |
-
- `batch_eval_metrics`: False
|
482 |
-
- `eval_on_start`: False
|
483 |
-
- `batch_sampler`: batch_sampler
|
484 |
-
- `multi_dataset_batch_sampler`: round_robin
|
485 |
-
|
486 |
-
</details>
|
487 |
-
|
488 |
-
### Training Logs
|
489 |
-
| Epoch | Step | Training Loss | all-nli loss | sts loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|
490 |
-
|:------:|:----:|:-------------:|:------------:|:--------:|:-----------------------:|:------------------------:|
|
491 |
-
| 0.1389 | 100 | 0.5848 | 1.0957 | 0.0324 | 0.8309 | - |
|
492 |
-
| 0.2778 | 200 | 0.5243 | 0.9695 | 0.0294 | 0.8386 | - |
|
493 |
-
| 0.4167 | 300 | 0.5135 | 0.9486 | 0.0295 | 0.8398 | - |
|
494 |
-
| 0.5556 | 400 | 0.4896 | 0.9366 | 0.0305 | 0.8317 | - |
|
495 |
-
| 0.6944 | 500 | 0.5048 | 0.9201 | 0.0298 | 0.8395 | - |
|
496 |
-
| 0.8333 | 600 | 0.4862 | 0.8885 | 0.0291 | 0.8370 | - |
|
497 |
-
| 0.9722 | 700 | 0.4628 | 0.8893 | 0.0289 | 0.8389 | - |
|
498 |
-
| 1.0 | 720 | - | - | - | - | 0.7893 |
|
499 |
-
|
500 |
-
|
501 |
-
### Framework Versions
|
502 |
-
- Python: 3.9.18
|
503 |
-
- Sentence Transformers: 3.0.1
|
504 |
-
- Transformers: 4.42.4
|
505 |
-
- PyTorch: 2.2.2+cu121
|
506 |
-
- Accelerate: 0.26.1
|
507 |
-
- Datasets: 2.19.0
|
508 |
-
- Tokenizers: 0.19.1
|
509 |
-
|
510 |
-
## Citation
|
511 |
-
|
512 |
-
### BibTeX
|
513 |
-
|
514 |
-
#### Sentence Transformers and SoftmaxLoss
|
515 |
-
```bibtex
|
516 |
-
@inproceedings{reimers-2019-sentence-bert,
|
517 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
518 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
519 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
520 |
-
month = "11",
|
521 |
-
year = "2019",
|
522 |
-
publisher = "Association for Computational Linguistics",
|
523 |
-
url = "https://arxiv.org/abs/1908.10084",
|
524 |
-
}
|
525 |
-
```
|
526 |
-
|
527 |
-
<!--
|
528 |
-
## Glossary
|
529 |
-
|
530 |
-
*Clearly define terms in order to be accessible across audiences.*
|
531 |
-
-->
|
532 |
-
|
533 |
-
<!--
|
534 |
-
## Model Card Authors
|
535 |
-
|
536 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
537 |
-
-->
|
538 |
-
|
539 |
-
<!--
|
540 |
-
## Model Card Contact
|
541 |
-
|
542 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
543 |
-
-->
|
|
|
132 |
name: Spearman Max
|
133 |
---
|
134 |
|
135 |
+
# GATE-AraBert-v0
|
136 |
|
137 |
+
This is a General Arabic Text Embedding trained using SentenceTransformers in a multi-task setup. The system trains on the AllNLI and on the STS dataset.
|
138 |
|
139 |
## Model Details
|
140 |
|
141 |
### Model Description
|
142 |
- **Model Type:** Sentence Transformer
|
143 |
+
- **Base model:** [Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2](https://huggingface.co/Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2) <!-- at revision 5ce4f80f3ede26de623d6ac10681399dba5c684a -->
|
144 |
- **Maximum Sequence Length:** 512 tokens
|
145 |
- **Output Dimensionality:** 768 tokens
|
146 |
- **Similarity Function:** Cosine Similarity
|
147 |
- **Training Datasets:**
|
148 |
+
- [all-nli](https://huggingface.co/datasets/Omartificial-Intelligence-Space/Arabic-NLi-Pair-Class)
|
149 |
- [sts](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb)
|
150 |
- **Language:** ar
|
|
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
## Usage
|
154 |
|
|
|
165 |
from sentence_transformers import SentenceTransformer
|
166 |
|
167 |
# Download from the 🤗 Hub
|
168 |
+
model = SentenceTransformer("Omartificial-Intelligence-Space/GATE-AraBert-v0")
|
169 |
# Run inference
|
170 |
sentences = [
|
171 |
'الكلب البني مستلقي على جانبه على سجادة بيج، مع جسم أخضر في المقدمة.',
|
|
|
182 |
# [3, 3]
|
183 |
```
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
## Evaluation
|
188 |
|
|
|
222 |
| pearson_max | 0.7923 |
|
223 |
| spearman_max | 0.7947 |
|
224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|