--- license: apache-2.0 language: - ar tags: - alpaca - llama3 - arabic --- [](https://www.omarai.co) # 🚀 al-baka-llama3-8b [](https://www.omarai.co) Al Baka is an Experimental Fine Tuned Model based on the new released LLAMA3-8B Model on the Stanford Alpaca dataset Arabic version [Yasbok/Alpaca_arabic_instruct](https://huggingface.co/datasets/Yasbok/Alpaca_arabic_instruct). ## Model Summary - **Model Type:** Llama3-8B FineTuned Model - **Language(s):** Arabic - **Base Model:** [LLAMA-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) - **Dataset:** [Yasbok/Alpaca_arabic_instruct](https://huggingface.co/datasets/Yasbok/Alpaca_arabic_instruct) ## Model Details - The model was fine-tuned in 4-bit precision using [unsloth](https://github.com/unslothai/unsloth) - The run is performed only for 1000 steps with a single Google Colab T4 GPU NVIDIA GPU with 15 GB of available memory. The model is currently being Experimentally Fine Tuned to assess LLaMA-3's response to Arabic, following a brief period of fine-tuning. Larger and more sophisticated models will be introduced soon. ## How to Get Started with the Model ### Setup ```python # Install packages !pip install accelerate bitsandbytes %%capture import torch major_version, minor_version = torch.cuda.get_device_capability() !pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" if major_version >= 8: # Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40) !pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes else: # Use this for older GPUs (V100, Tesla T4, RTX 20xx) !pip install --no-deps xformers trl peft accelerate bitsandbytes pass ``` ### First, Load the Model ```python from unsloth import FastLanguageModel import torch max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. model, tokenizer = FastLanguageModel.from_pretrained( model_name = "Omartificial-Intelligence-Space/al-baka-16bit-llama3-8b", max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf ) ``` ### Second, Try the model ```python alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" # alpaca_prompt = Copied from above FastLanguageModel.for_inference(model) # Enable native 2x faster inference inputs = tokenizer( [ alpaca_prompt.format( "استخدم البيانات المعطاة لحساب الوسيط.", # instruction "[2 ، 3 ، 7 ، 8 ، 10]", # input "", # output - leave this blank for generation! ) ], return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) tokenizer.batch_decode(outputs) ``` ### Recommendations - [unsloth](https://github.com/unslothai/unsloth) for finetuning models. You can get a 2x faster finetuned model which can be exported to any format or uploaded to Hugging Face.