File size: 2,406 Bytes
6ddf685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51d2e11
 
 
 
 
 
6ddf685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51d2e11
6ddf685
 
 
 
 
 
51d2e11
 
 
 
 
 
6ddf685
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: mit
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: mDeBERTa-v3-base-xnli-multilingual-nli-2mil7-energy
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mDeBERTa-v3-base-xnli-multilingual-nli-2mil7-energy

This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2358
- Accuracy: 0.9580
- Precision: 0.9583
- Recall: 0.9578
- F1: 0.9580
- Ratio: 0.4803

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- lr_scheduler_warmup_steps: 3
- num_epochs: 3
- label_smoothing_factor: 0.01

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Ratio  |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
| 0.5219        | 0.43  | 400  | 0.3524          | 0.8954   | 0.8972    | 0.8946 | 0.8951 | 0.4577 |
| 0.4069        | 0.86  | 800  | 0.3178          | 0.9249   | 0.9250    | 0.9246 | 0.9248 | 0.4809 |
| 0.2326        | 1.29  | 1200 | 0.3055          | 0.9355   | 0.9360    | 0.9351 | 0.9354 | 0.4740 |
| 0.2045        | 1.72  | 1600 | 0.2847          | 0.9455   | 0.9457    | 0.9453 | 0.9455 | 0.4803 |
| 0.1423        | 2.15  | 2000 | 0.2477          | 0.9555   | 0.9555    | 0.9556 | 0.9555 | 0.4903 |
| 0.0935        | 2.58  | 2400 | 0.2367          | 0.9599   | 0.9598    | 0.9600 | 0.9599 | 0.4922 |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.7
- Tokenizers 0.13.3