czczup commited on
Commit
c38a7fe
·
verified ·
1 Parent(s): 0dd5715

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -0
README.md CHANGED
@@ -1,3 +1,62 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ datasets:
4
+ - laion/laion2B-en
5
+ - laion/laion-coco
6
+ - laion/laion2B-multi
7
+ - kakaobrain/coyo-700m
8
+ - conceptual_captions
9
+ - wanng/wukong100m
10
  ---
11
+
12
+ # Model Card for InternVL-Chat-Chinese-V1.1
13
+
14
+ ## What is InternVL?
15
+
16
+ \[[Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\]
17
+
18
+ InternVL scales up the ViT to _**6B parameters**_ and aligns it with LLM.
19
+
20
+ It is _**the largest open-source vision/vision-language foundation model (14B)**_ to date, achieving _**32 state-of-the-art**_ performances on a wide range of tasks such as visual perception, cross-modal retrieval, multimodal dialogue, etc.
21
+
22
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/QmVXOyr4uFQLx5Q-WLn9-.png)
23
+
24
+ ## Model Details
25
+ - **Model Type:** multimodal chatbot
26
+ - **Model Stats:**
27
+ - Architecture: InternViT-6B + MLP + LLaMA2-13B
28
+ - Params (M): 19B
29
+ - Image size: 448 x 448
30
+
31
+ - **Training Strategy:**
32
+ - Pretraining Stage
33
+ - Learnable Component: InternViT-6B
34
+ - Data: 72M samples from COYO, LAION, CC12M, CC3M, SBU, Wukong, GRIT, Objects365, OpenImages, OCR data.
35
+ - SFT Stage
36
+ - Learnable Component: MLP + LLM
37
+ - Data: A comprehensive collection of open-source SFT datasets, along with their Chinese translation versions, totaling approximately 10M.
38
+
39
+
40
+ ## Model Usage
41
+
42
+ ```python
43
+ TODO
44
+ ```
45
+
46
+ ## Citation
47
+
48
+ If you find this project useful in your research, please consider cite:
49
+
50
+ ```BibTeX
51
+ @article{chen2023internvl,
52
+ title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
53
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
54
+ journal={arXiv preprint arXiv:2312.14238},
55
+ year={2023}
56
+ }
57
+ ```
58
+
59
+
60
+ ## Acknowledgement
61
+
62
+ InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!