Upload folder using huggingface_hub
Browse files- README.md +4 -0
- modeling_internvl_chat.py +3 -3
README.md
CHANGED
@@ -100,6 +100,7 @@ model = AutoModel.from_pretrained(
|
|
100 |
path,
|
101 |
torch_dtype=torch.bfloat16,
|
102 |
low_cpu_mem_usage=True,
|
|
|
103 |
trust_remote_code=True).eval().cuda()
|
104 |
```
|
105 |
|
@@ -114,6 +115,7 @@ model = AutoModel.from_pretrained(
|
|
114 |
torch_dtype=torch.bfloat16,
|
115 |
load_in_8bit=True,
|
116 |
low_cpu_mem_usage=True,
|
|
|
117 |
trust_remote_code=True).eval()
|
118 |
```
|
119 |
|
@@ -160,6 +162,7 @@ model = AutoModel.from_pretrained(
|
|
160 |
path,
|
161 |
torch_dtype=torch.bfloat16,
|
162 |
low_cpu_mem_usage=True,
|
|
|
163 |
trust_remote_code=True,
|
164 |
device_map=device_map).eval()
|
165 |
```
|
@@ -256,6 +259,7 @@ model = AutoModel.from_pretrained(
|
|
256 |
path,
|
257 |
torch_dtype=torch.bfloat16,
|
258 |
low_cpu_mem_usage=True,
|
|
|
259 |
trust_remote_code=True).eval().cuda()
|
260 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
261 |
|
|
|
100 |
path,
|
101 |
torch_dtype=torch.bfloat16,
|
102 |
low_cpu_mem_usage=True,
|
103 |
+
use_flash_attn=True,
|
104 |
trust_remote_code=True).eval().cuda()
|
105 |
```
|
106 |
|
|
|
115 |
torch_dtype=torch.bfloat16,
|
116 |
load_in_8bit=True,
|
117 |
low_cpu_mem_usage=True,
|
118 |
+
use_flash_attn=True,
|
119 |
trust_remote_code=True).eval()
|
120 |
```
|
121 |
|
|
|
162 |
path,
|
163 |
torch_dtype=torch.bfloat16,
|
164 |
low_cpu_mem_usage=True,
|
165 |
+
use_flash_attn=True,
|
166 |
trust_remote_code=True,
|
167 |
device_map=device_map).eval()
|
168 |
```
|
|
|
259 |
path,
|
260 |
torch_dtype=torch.bfloat16,
|
261 |
low_cpu_mem_usage=True,
|
262 |
+
use_flash_attn=True,
|
263 |
trust_remote_code=True).eval().cuda()
|
264 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
265 |
|
modeling_internvl_chat.py
CHANGED
@@ -10,15 +10,14 @@ import torch.utils.checkpoint
|
|
10 |
import transformers
|
11 |
from torch import nn
|
12 |
from torch.nn import CrossEntropyLoss
|
13 |
-
from transformers import
|
14 |
-
LlamaTokenizer)
|
15 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
16 |
from transformers.modeling_utils import PreTrainedModel
|
17 |
from transformers.utils import ModelOutput, logging
|
18 |
|
19 |
from .configuration_internvl_chat import InternVLChatConfig
|
20 |
from .conversation import get_conv_template
|
21 |
-
from .modeling_intern_vit import InternVisionModel
|
22 |
from .modeling_internlm2 import InternLM2ForCausalLM
|
23 |
|
24 |
logger = logging.get_logger(__name__)
|
@@ -50,6 +49,7 @@ class InternVLChatModel(PreTrainedModel):
|
|
50 |
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
51 |
self.downsample_ratio = config.downsample_ratio
|
52 |
self.ps_version = config.ps_version
|
|
|
53 |
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
54 |
config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
|
55 |
|
|
|
10 |
import transformers
|
11 |
from torch import nn
|
12 |
from torch.nn import CrossEntropyLoss
|
13 |
+
from transformers import AutoModel, GenerationConfig, LlamaForCausalLM
|
|
|
14 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
15 |
from transformers.modeling_utils import PreTrainedModel
|
16 |
from transformers.utils import ModelOutput, logging
|
17 |
|
18 |
from .configuration_internvl_chat import InternVLChatConfig
|
19 |
from .conversation import get_conv_template
|
20 |
+
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
21 |
from .modeling_internlm2 import InternLM2ForCausalLM
|
22 |
|
23 |
logger = logging.get_logger(__name__)
|
|
|
49 |
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
50 |
self.downsample_ratio = config.downsample_ratio
|
51 |
self.ps_version = config.ps_version
|
52 |
+
use_flash_attn = use_flash_attn if has_flash_attn else False
|
53 |
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
54 |
config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
|
55 |
|