fix compatibility issue for transformers 4.46+
Browse files- README.md +18 -278
- configuration_internvl_chat.py +2 -2
README.md
CHANGED
@@ -5,6 +5,7 @@ library_name: transformers
|
|
5 |
base_model:
|
6 |
- OpenGVLab/InternViT-300M-448px
|
7 |
- internlm/internlm2_5-7b-chat
|
|
|
8 |
base_model_relation: merge
|
9 |
language:
|
10 |
- multilingual
|
@@ -19,13 +20,13 @@ tags:
|
|
19 |
|
20 |
# InternVL2-8B
|
21 |
|
22 |
-
[\[๐ GitHub\]](https://github.com/OpenGVLab/InternVL) [\[๐ Blog\]](https://internvl.github.io/blog/) [\[๐ InternVL 1.0
|
23 |
|
24 |
[\[๐จ๏ธ Chat Demo\]](https://internvl.opengvlab.com/) [\[๐ค HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[๐ Quick Start\]](#quick-start) [\[๐ ไธญๆ่งฃ่ฏป\]](https://zhuanlan.zhihu.com/p/706547971) [\[๐ Documents\]](https://internvl.readthedocs.io/en/latest/)
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
|
30 |
## Introduction
|
31 |
|
@@ -65,7 +66,7 @@ InternVL 2.0 is a multimodal large language model series, featuring models of va
|
|
65 |
| MME<sub>sum</sub> | 2024.6 | 2187.8 | 2210.3 |
|
66 |
| RealWorldQA | 63.5 | 66.0 | 64.4 |
|
67 |
| AI2D<sub>test</sub> | 78.4 | 80.7 | 83.8 |
|
68 |
-
| MMMU<sub>val</sub> | 45.8 |
|
69 |
| MMBench-EN<sub>test</sub> | 77.2 | 82.2 | 81.7 |
|
70 |
| MMBench-CN<sub>test</sub> | 74.2 | 82.0 | 81.2 |
|
71 |
| CCBench<sub>dev</sub> | 45.9 | 69.8 | 75.9 |
|
@@ -78,9 +79,7 @@ InternVL 2.0 is a multimodal large language model series, featuring models of va
|
|
78 |
|
79 |
- For more details and evaluation reproduction, please refer to our [Evaluation Guide](https://internvl.readthedocs.io/en/latest/internvl2.0/evaluation.html).
|
80 |
|
81 |
-
- We simultaneously use [InternVL](https://github.com/OpenGVLab/InternVL) and [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) repositories for model evaluation. Specifically, the results reported for DocVQA, ChartQA, InfoVQA, TextVQA, MME, AI2D, MMBench, CCBench, MMVet, and SEED-Image were tested using the InternVL repository. OCRBench, RealWorldQA, HallBench, and MathVista were evaluated using the VLMEvalKit.
|
82 |
-
|
83 |
-
- For MMMU, we report both the original scores (left side: evaluated using the InternVL codebase for InternVL series models, and sourced from technical reports or webpages for other models) and the VLMEvalKit scores (right side: collected from the OpenCompass leaderboard).
|
84 |
|
85 |
- Please note that evaluating the same model using different testing toolkits like [InternVL](https://github.com/OpenGVLab/InternVL) and [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) can result in slight differences, which is normal. Updates to code versions and variations in environment and hardware can also cause minor discrepancies in results.
|
86 |
|
@@ -130,7 +129,7 @@ We provide an example code to run InternVL2-8B using `transformers`.
|
|
130 |
|
131 |
We also welcome you to experience the InternVL2 series models in our [online demo](https://internvl.opengvlab.com/).
|
132 |
|
133 |
-
> Please use transformers
|
134 |
|
135 |
### Model Loading
|
136 |
|
@@ -442,7 +441,7 @@ response, history = model.chat(tokenizer, pixel_values, question, generation_con
|
|
442 |
print(f'User: {question}\nAssistant: {response}')
|
443 |
```
|
444 |
|
445 |
-
#### Streaming
|
446 |
|
447 |
Besides this method, you can also use the following code to get streamed output.
|
448 |
|
@@ -482,12 +481,12 @@ Many repositories now support fine-tuning of the InternVL series models, includi
|
|
482 |
LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
|
483 |
|
484 |
```sh
|
485 |
-
pip install lmdeploy
|
486 |
```
|
487 |
|
488 |
LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
|
489 |
|
490 |
-
#### A 'Hello, world'
|
491 |
|
492 |
```python
|
493 |
from lmdeploy import pipeline, TurbomindEngineConfig
|
@@ -502,7 +501,7 @@ print(response.text)
|
|
502 |
|
503 |
If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
|
504 |
|
505 |
-
#### Multi-images
|
506 |
|
507 |
When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
|
508 |
|
@@ -527,7 +526,7 @@ response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe thes
|
|
527 |
print(response.text)
|
528 |
```
|
529 |
|
530 |
-
#### Batch
|
531 |
|
532 |
Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
|
533 |
|
@@ -547,7 +546,7 @@ response = pipe(prompts)
|
|
547 |
print(response)
|
548 |
```
|
549 |
|
550 |
-
#### Multi-turn
|
551 |
|
552 |
There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
|
553 |
|
@@ -617,271 +616,12 @@ This project is released under the MIT license, while InternLM2 is licensed unde
|
|
617 |
If you find this project useful in your research, please consider citing:
|
618 |
|
619 |
```BibTeX
|
620 |
-
@article{
|
621 |
-
title={
|
622 |
-
author={
|
623 |
-
journal={arXiv preprint arXiv:
|
624 |
-
year={2023}
|
625 |
-
}
|
626 |
-
@article{chen2024far,
|
627 |
-
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
|
628 |
-
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
|
629 |
-
journal={arXiv preprint arXiv:2404.16821},
|
630 |
year={2024}
|
631 |
}
|
632 |
-
```
|
633 |
-
|
634 |
-
## ็ฎไป
|
635 |
-
|
636 |
-
ๆไปฌๅพ้ซๅ
ดๅฎฃๅธ InternVL 2.0 ็ๅๅธ๏ผ่ฟๆฏ InternVL ็ณปๅๅคๆจกๆๅคง่ฏญ่จๆจกๅ็ๆๆฐ็ๆฌใInternVL 2.0 ๆไพไบๅค็ง**ๆไปคๅพฎ่ฐ**็ๆจกๅ๏ผๅๆฐไป 10 ไบฟๅฐ 1080 ไบฟไธ็ญใๆญคไปๅบๅ
ๅซ็ป่ฟๆไปคๅพฎ่ฐ็ InternVL2-8B ๆจกๅใ
|
637 |
-
|
638 |
-
ไธๆๅ
่ฟ็ๅผๆบๅคๆจกๆๅคง่ฏญ่จๆจกๅ็ธๆฏ๏ผInternVL 2.0 ่ถ
่ถไบๅคงๅคๆฐๅผๆบๆจกๅใๅฎๅจๅ็ง่ฝๅไธ่กจ็ฐๅบไธ้ญๆบๅไธๆจกๅ็ธๅชฒ็พ็็ซไบๅ๏ผๅ
ๆฌๆๆกฃๅๅพ่กจ็่งฃใไฟกๆฏๅพ่กจ้ฎ็ญใๅบๆฏๆๆฌ็่งฃๅ OCR ไปปๅกใ็งๅญฆๅๆฐๅญฆ้ฎ้ข่งฃๅณ๏ผไปฅๅๆๅ็่งฃๅ็ปผๅๅคๆจกๆ่ฝๅใ
|
639 |
-
|
640 |
-
InternVL 2.0 ไฝฟ็จ 8k ไธไธๆ็ชๅฃ่ฟ่ก่ฎญ็ป๏ผ่ฎญ็ปๆฐๆฎๅ
ๅซ้ฟๆๆฌใๅคๅพๅ่ง้ขๆฐๆฎ๏ผไธ InternVL 1.5 ็ธๆฏ๏ผๅ
ถๅค็่ฟไบ็ฑปๅ่พๅ
ฅ็่ฝๅๆพ่ๆ้ซใๆดๅค่ฏฆ็ปไฟกๆฏ๏ผ่ฏทๅ้
ๆไปฌ็ๅๅฎขๅ GitHubใ
|
641 |
-
|
642 |
-
| ๆจกๅๅ็งฐ | ่ง่ง้จๅ | ่ฏญ่จ้จๅ | HF ้พๆฅ | MS ้พๆฅ |
|
643 |
-
| :------------------: | :---------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: | :--------------------------------------------------------------: | :--------------------------------------------------------------------: |
|
644 |
-
| InternVL2-1B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) | [๐ค link](https://huggingface.co/OpenGVLab/InternVL2-1B) | [๐ค link](https://modelscope.cn/models/OpenGVLab/InternVL2-1B) |
|
645 |
-
| InternVL2-2B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [internlm2-chat-1_8b](https://huggingface.co/internlm/internlm2-chat-1_8b) | [๐ค link](https://huggingface.co/OpenGVLab/InternVL2-2B) | [๐ค link](https://modelscope.cn/models/OpenGVLab/InternVL2-2B) |
|
646 |
-
| InternVL2-4B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) | [๐ค link](https://huggingface.co/OpenGVLab/InternVL2-4B) | [๐ค link](https://modelscope.cn/models/OpenGVLab/InternVL2-4B) |
|
647 |
-
| InternVL2-8B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [๐ค link](https://huggingface.co/OpenGVLab/InternVL2-8B) | [๐ค link](https://modelscope.cn/models/OpenGVLab/InternVL2-8B) |
|
648 |
-
| InternVL2-26B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [internlm2-chat-20b](https://huggingface.co/internlm/internlm2-chat-20b) | [๐ค link](https://huggingface.co/OpenGVLab/InternVL2-26B) | [๐ค link](https://modelscope.cn/models/OpenGVLab/InternVL2-26B) |
|
649 |
-
| InternVL2-40B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) | [๐ค link](https://huggingface.co/OpenGVLab/InternVL2-40B) | [๐ค link](https://modelscope.cn/models/OpenGVLab/InternVL2-40B) |
|
650 |
-
| InternVL2-Llama3-76B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [Hermes-2-Theta-Llama-3-70B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-70B) | [๐ค link](https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B) | [๐ค link](https://modelscope.cn/models/OpenGVLab/InternVL2-Llama3-76B) |
|
651 |
-
|
652 |
-
## ๆจกๅ็ป่
|
653 |
-
|
654 |
-
InternVL 2.0 ๆฏไธไธชๅคๆจกๆๅคง่ฏญ่จๆจกๅ็ณปๅ๏ผๅ
ๅซๅ็ง่งๆจก็ๆจกๅใๅฏนไบๆฏไธช่งๆจก็ๆจกๅ๏ผๆไปฌ้ฝไผๅๅธ้ๅฏนๅคๆจกๆไปปๅกไผๅ็ๆไปคๅพฎ่ฐๆจกๅใInternVL2-8B ๅ
ๅซ [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px)ใไธไธช MLP ๆๅฝฑๅจๅ [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat)ใ
|
655 |
-
|
656 |
-
## ๆง่ฝๆต่ฏ
|
657 |
-
|
658 |
-
### ๅพๅ็ธๅ
ณ่ฏๆต
|
659 |
-
|
660 |
-
| ่ฏๆตๆฐๆฎ้ | MiniCPM-Llama3-V-2_5 | InternVL-Chat-V1-5 | InternVL2-8B |
|
661 |
-
| :--------------------------: | :------------------: | :----------------: | :----------: |
|
662 |
-
| ๆจกๅๅคงๅฐ | 8.5B | 25.5B | 8.1B |
|
663 |
-
| | | | |
|
664 |
-
| DocVQA<sub>test</sub> | 84.8 | 90.9 | 91.6 |
|
665 |
-
| ChartQA<sub>test</sub> | - | 83.8 | 83.3 |
|
666 |
-
| InfoVQA<sub>test</sub> | - | 72.5 | 74.8 |
|
667 |
-
| TextVQA<sub>val</sub> | 76.6 | 80.6 | 77.4 |
|
668 |
-
| OCRBench | 725 | 724 | 794 |
|
669 |
-
| MME<sub>sum</sub> | 2024.6 | 2187.8 | 2210.3 |
|
670 |
-
| RealWorldQA | 63.5 | 66.0 | 64.4 |
|
671 |
-
| AI2D<sub>test</sub> | 78.4 | 80.7 | 83.8 |
|
672 |
-
| MMMU<sub>val</sub> | 45.8 | 45.2 / 46.8 | 49.3 / 51.8 |
|
673 |
-
| MMBench-EN<sub>test</sub> | 77.2 | 82.2 | 81.7 |
|
674 |
-
| MMBench-CN<sub>test</sub> | 74.2 | 82.0 | 81.2 |
|
675 |
-
| CCBench<sub>dev</sub> | 45.9 | 69.8 | 75.9 |
|
676 |
-
| MMVet<sub>GPT-4-0613</sub> | - | 62.8 | 60.0 |
|
677 |
-
| MMVet<sub>GPT-4-Turbo</sub> | 52.8 | 55.4 | 54.2 |
|
678 |
-
| SEED-Image | 72.3 | 76.0 | 76.2 |
|
679 |
-
| HallBench<sub>avg</sub> | 42.4 | 49.3 | 45.2 |
|
680 |
-
| MathVista<sub>testmini</sub> | 54.3 | 53.5 | 58.3 |
|
681 |
-
| OpenCompass<sub>avg</sub> | 58.8 | 61.7 | 64.1 |
|
682 |
-
|
683 |
-
- ๅ
ณไบๆดๅค็็ป่ไปฅๅ่ฏๆตๅค็ฐ๏ผ่ฏท็ๆไปฌ็[่ฏๆตๆๅ](https://internvl.readthedocs.io/en/latest/internvl2.0/evaluation.html)ใ
|
684 |
-
|
685 |
-
- ๆไปฌๅๆถไฝฟ็จ InternVL ๅ VLMEvalKit ไปๅบ่ฟ่กๆจกๅ่ฏไผฐใๅ
ทไฝๆฅ่ฏด๏ผDocVQAใChartQAใInfoVQAใTextVQAใMMEใAI2DใMMBenchใCCBenchใMMVet ๅ SEED-Image ็็ปๆๆฏไฝฟ็จ InternVL ไปๅบๆต่ฏ็ใOCRBenchใRealWorldQAใHallBench ๅ MathVista ๆฏไฝฟ็จ VLMEvalKit ่ฟ่ก่ฏไผฐ็ใ
|
686 |
-
|
687 |
-
- ๅฏนไบMMMU๏ผๆไปฌๆฅๅไบๅๅงๅๆฐ๏ผๅทฆไพง๏ผInternVL็ณปๅๆจกๅไฝฟ็จInternVLไปฃ็ ๅบ่ฏๆต๏ผๅ
ถไปๆจกๅ็ๅๆฐๆฅ่ชๅ
ถๆๆฏๆฅๅๆ็ฝ้กต๏ผๅVLMEvalKitๅๆฐ๏ผๅณไพง๏ผไปOpenCompassๆ่กๆฆๆถ้๏ผใ
|
688 |
-
|
689 |
-
- ่ฏทๆณจๆ๏ผไฝฟ็จไธๅ็ๆต่ฏๅทฅๅ
ทๅ
๏ผๅฆ InternVL ๅ VLMEvalKit๏ผ่ฏไผฐๅไธๆจกๅๅฏ่ฝไผๅฏผ่ด็ปๅพฎๅทฎๅผ๏ผ่ฟๆฏๆญฃๅธธ็ใไปฃ็ ็ๆฌ็ๆดๆฐใ็ฏๅขๅ็กฌไปถ็ๅๅไนๅฏ่ฝๅฏผ่ด็ปๆ็ๅพฎๅฐๅทฎๅผใ
|
690 |
-
|
691 |
-
### ่ง้ข็ธๅ
ณ่ฏๆต
|
692 |
-
|
693 |
-
| ่ฏๆตๆฐๆฎ้ | VideoChat2-HD-Mistral | Video-CCAM-9B | InternVL2-4B | InternVL2-8B |
|
694 |
-
| :-------------------------: | :-------------------: | :-----------: | :----------: | :----------: |
|
695 |
-
| ๆจกๅๅคงๅฐ | 7B | 9B | 4.2B | 8.1B |
|
696 |
-
| | | | | |
|
697 |
-
| MVBench | 60.4 | 60.7 | 63.7 | 66.4 |
|
698 |
-
| MMBench-Video<sub>8f</sub> | - | - | 1.10 | 1.19 |
|
699 |
-
| MMBench-Video<sub>16f</sub> | - | - | 1.18 | 1.28 |
|
700 |
-
| Video-MME<br>w/o subs | 42.3 | 50.6 | 51.4 | 54.0 |
|
701 |
-
| Video-MME<br>w subs | 54.6 | 54.9 | 53.4 | 56.9 |
|
702 |
-
|
703 |
-
- ๆไปฌ้่ฟไปๆฏไธช่ง้ขไธญๆๅ 16 ๅธงๆฅ่ฏไผฐๆไปฌ็ๆจกๅๅจ MVBench ๅ Video-MME ไธ็ๆง่ฝ๏ผๆฏไธช่ง้ขๅธง่ขซ่ฐๆดไธบ 448x448 ็ๅพๅใ
|
704 |
-
|
705 |
-
### ๅฎไฝ็ธๅ
ณ่ฏๆต
|
706 |
-
|
707 |
-
| ๆจกๅ | avg. | RefCOCO<br>(val) | RefCOCO<br>(testA) | RefCOCO<br>(testB) | RefCOCO+<br>(val) | RefCOCO+<br>(testA) | RefCOCO+<br>(testB) | RefCOCOโg<br>(val) | RefCOCOโg<br>(test) |
|
708 |
-
| :----------------------------: | :--: | :--------------: | :----------------: | :----------------: | :---------------: | :-----------------: | :-----------------: | :----------------: | :-----------------: |
|
709 |
-
| UNINEXT-H<br>(Specialist SOTA) | 88.9 | 92.6 | 94.3 | 91.5 | 85.2 | 89.6 | 79.8 | 88.7 | 89.4 |
|
710 |
-
| | | | | | | | | | |
|
711 |
-
| Mini-InternVL-<br>Chat-2B-V1-5 | 75.8 | 80.7 | 86.7 | 72.9 | 72.5 | 82.3 | 60.8 | 75.6 | 74.9 |
|
712 |
-
| Mini-InternVL-<br>Chat-4B-V1-5 | 84.4 | 88.0 | 91.4 | 83.5 | 81.5 | 87.4 | 73.8 | 84.7 | 84.6 |
|
713 |
-
| InternVLโChatโV1โ5 | 88.8 | 91.4 | 93.7 | 87.1 | 87.0 | 92.3 | 80.9 | 88.5 | 89.3 |
|
714 |
-
| | | | | | | | | | |
|
715 |
-
| InternVL2โ1B | 79.9 | 83.6 | 88.7 | 79.8 | 76.0 | 83.6 | 67.7 | 80.2 | 79.9 |
|
716 |
-
| InternVL2โ2B | 77.7 | 82.3 | 88.2 | 75.9 | 73.5 | 82.8 | 63.3 | 77.6 | 78.3 |
|
717 |
-
| InternVL2โ4B | 84.4 | 88.5 | 91.2 | 83.9 | 81.2 | 87.2 | 73.8 | 84.6 | 84.6 |
|
718 |
-
| InternVL2โ8B | 82.9 | 87.1 | 91.1 | 80.7 | 79.8 | 87.9 | 71.4 | 82.7 | 82.7 |
|
719 |
-
| InternVL2โ26B | 88.5 | 91.2 | 93.3 | 87.4 | 86.8 | 91.0 | 81.2 | 88.5 | 88.6 |
|
720 |
-
| InternVL2โ40B | 90.3 | 93.0 | 94.7 | 89.2 | 88.5 | 92.8 | 83.6 | 90.3 | 90.6 |
|
721 |
-
| InternVL2-<br>Llama3โ76B | 90.0 | 92.2 | 94.8 | 88.4 | 88.8 | 93.1 | 82.8 | 89.5 | 90.3 |
|
722 |
-
|
723 |
-
- ๆไปฌไฝฟ็จไปฅไธ Prompt ๆฅ่ฏๆต InternVL ็ Grounding ่ฝๅ: `Please provide the bounding box coordinates of the region this sentence describes: <ref>{}</ref>`
|
724 |
-
|
725 |
-
้ๅถ๏ผๅฐฝ็ฎกๅจ่ฎญ็ป่ฟ็จไธญๆไปฌ้ๅธธๆณจ้ๆจกๅ็ๅฎๅ
จๆง๏ผๅฐฝๅไฟไฝฟๆจกๅ่พๅบ็ฌฆๅไผฆ็ๅๆณๅพ่ฆๆฑ็ๆๆฌ๏ผไฝๅ้ไบๆจกๅๅคงๅฐไปฅๅๆฆ็็ๆ่ๅผ๏ผๆจกๅๅฏ่ฝไผไบง็ๅ็งไธ็ฌฆๅ้ขๆ็่พๅบ๏ผไพๅฆๅๅคๅ
ๅฎนๅ
ๅซๅ่งใๆญง่ง็ญๆๅฎณๅ
ๅฎน๏ผ่ฏทๅฟไผ ๆญ่ฟไบๅ
ๅฎนใ็ฑไบไผ ๆญไธ่ฏไฟกๆฏๅฏผ่ด็ไปปไฝๅๆ๏ผๆฌ้กน็ฎไธๆฟๆ
่ดฃไปปใ
|
726 |
-
|
727 |
-
### ้่ฏท่ฏๆต InternVL
|
728 |
-
|
729 |
-
ๆไปฌๆฌข่ฟๅไฝ MLLM benchmark ็ๅผๅ่
ๅฏนๆไปฌ็ InternVL1.5 ไปฅๅ InternVL2 ็ณปๅๆจกๅ่ฟ่ก่ฏๆตใๅฆๆ้่ฆๅจๆญคๅคๆทปๅ ่ฏๆต็ปๆ๏ผ่ฏทไธๆ่็ณป๏ผ[wztxy89@163.com](mailto:wztxy89@163.com)๏ผใ
|
730 |
-
|
731 |
-
## ๅฟซ้ๅฏๅจ
|
732 |
-
|
733 |
-
ๆไปฌๆไพไบไธไธช็คบไพไปฃ็ ๏ผ็จไบไฝฟ็จ `transformers` ่ฟ่ก InternVL2-8Bใ
|
734 |
-
|
735 |
-
ๆไปฌไนๆฌข่ฟไฝ ๅจๆไปฌ็[ๅจ็บฟdemo](https://internvl.opengvlab.com/)ไธญไฝ้ชInternVL2็็ณปๅๆจกๅใ
|
736 |
-
|
737 |
-
> ่ฏทไฝฟ็จ transformers==4.37.2 ไปฅ็กฎไฟๆจกๅๆญฃๅธธ่ฟ่กใ
|
738 |
-
|
739 |
-
็คบไพไปฃ็ ่ฏท[็นๅป่ฟ้](#quick-start)ใ
|
740 |
-
|
741 |
-
## ๅพฎ่ฐ
|
742 |
-
|
743 |
-
่ฎธๅคไปๅบ็ฐๅจ้ฝๆฏๆ InternVL ็ณปๅๆจกๅ็ๅพฎ่ฐ๏ผๅ
ๆฌ [InternVL](https://github.com/OpenGVLab/InternVL)ใ[SWIFT](https://github.com/modelscope/ms-swift)ใ[XTurner](https://github.com/InternLM/xtuner) ็ญใ่ฏทๅ้
ๅฎไปฌ็ๆๆกฃไปฅ่ทๅๆดๅคๅพฎ่ฐ็ป่ใ
|
744 |
-
|
745 |
-
## ้จ็ฝฒ
|
746 |
-
|
747 |
-
### LMDeploy
|
748 |
-
|
749 |
-
LMDeploy ๆฏ็ฑ MMRazor ๅ MMDeploy ๅข้ๅผๅ็็จไบๅ็ผฉใ้จ็ฝฒๅๆๅกๅคง่ฏญ่จๆจกๅ๏ผLLM๏ผ็ๅทฅๅ
ทๅ
ใ
|
750 |
-
|
751 |
-
```sh
|
752 |
-
pip install lmdeploy==0.5.3
|
753 |
-
```
|
754 |
-
|
755 |
-
LMDeploy ๅฐๅคๆจกๆ่ง่ง-่ฏญ่จๆจกๅ๏ผVLM๏ผ็ๅคๆๆจ็่ฟ็จๆฝ่ฑกไธบไธไธชๆไบไฝฟ็จ็็ฎก้๏ผ็ฑปไผผไบๅคง่ฏญ่จๆจกๅ๏ผLLM๏ผ็ๆจ็็ฎก้ใ
|
756 |
-
|
757 |
-
#### ไธไธชโไฝ ๅฅฝ๏ผไธ็โ็คบไพ
|
758 |
-
|
759 |
-
```python
|
760 |
-
from lmdeploy import pipeline, TurbomindEngineConfig
|
761 |
-
from lmdeploy.vl import load_image
|
762 |
-
|
763 |
-
model = 'OpenGVLab/InternVL2-8B'
|
764 |
-
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
|
765 |
-
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
766 |
-
response = pipe(('describe this image', image))
|
767 |
-
print(response.text)
|
768 |
-
```
|
769 |
-
|
770 |
-
ๅฆๆๅจๆง่กๆญค็คบไพๆถๅบ็ฐ `ImportError`๏ผ่ฏทๆ็
งๆ็คบๅฎ่ฃ
ๆ้็ไพ่ตๅ
ใ
|
771 |
-
|
772 |
-
#### ๅคๅพๅๆจ็
|
773 |
-
|
774 |
-
ๅจๅค็ๅคๅผ ๅพๅๆถ๏ผๅฏไปฅๅฐๅฎไปฌๅ
จ้จๆพๅ
ฅไธไธชๅ่กจไธญใ่ฏทๆณจๆ๏ผๅคๅผ ๅพๅไผๅฏผ่ด่พๅ
ฅ token ๆฐ้ๅขๅ ๏ผๅ ๆญค้ๅธธ้่ฆๅขๅ ไธไธๆ็ชๅฃ็ๅคงๅฐใ
|
775 |
-
|
776 |
-
```python
|
777 |
-
from lmdeploy import pipeline, TurbomindEngineConfig
|
778 |
-
from lmdeploy.vl import load_image
|
779 |
-
from lmdeploy.vl.constants import IMAGE_TOKEN
|
780 |
-
|
781 |
-
model = 'OpenGVLab/InternVL2-8B'
|
782 |
-
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
783 |
-
|
784 |
-
image_urls=[
|
785 |
-
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
|
786 |
-
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
|
787 |
-
]
|
788 |
-
|
789 |
-
images = [load_image(img_url) for img_url in image_urls]
|
790 |
-
# Numbering images improves multi-image conversations
|
791 |
-
response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
|
792 |
-
print(response.text)
|
793 |
-
```
|
794 |
-
|
795 |
-
#### ๆน้Promptๆจ็
|
796 |
-
|
797 |
-
ไฝฟ็จๆน้Prompt่ฟ่กๆจ็้ๅธธ็ฎๅ๏ผๅช้ๅฐๅฎไปฌๆพๅจไธไธชๅ่กจ็ปๆไธญ๏ผ
|
798 |
-
|
799 |
-
```python
|
800 |
-
from lmdeploy import pipeline, TurbomindEngineConfig
|
801 |
-
from lmdeploy.vl import load_image
|
802 |
-
|
803 |
-
model = 'OpenGVLab/InternVL2-8B'
|
804 |
-
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
805 |
-
|
806 |
-
image_urls=[
|
807 |
-
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
|
808 |
-
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
|
809 |
-
]
|
810 |
-
prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
|
811 |
-
response = pipe(prompts)
|
812 |
-
print(response)
|
813 |
-
```
|
814 |
-
|
815 |
-
#### ๅค่ฝฎๅฏน่ฏ
|
816 |
-
|
817 |
-
ไฝฟ็จ็ฎก้่ฟ่กๅค่ฝฎๅฏน่ฏๆไธค็งๆนๆณใไธ็งๆฏๆ นๆฎ OpenAI ็ๆ ผๅผๆๅปบๆถๆฏๅนถไฝฟ็จไธ่ฟฐๆนๆณ๏ผๅฆไธ็งๆฏไฝฟ็จ `pipeline.chat` ๆฅๅฃใ
|
818 |
-
|
819 |
-
```python
|
820 |
-
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
|
821 |
-
from lmdeploy.vl import load_image
|
822 |
-
|
823 |
-
model = 'OpenGVLab/InternVL2-8B'
|
824 |
-
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
825 |
-
|
826 |
-
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
|
827 |
-
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
|
828 |
-
sess = pipe.chat(('describe this image', image), gen_config=gen_config)
|
829 |
-
print(sess.response.text)
|
830 |
-
sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
|
831 |
-
print(sess.response.text)
|
832 |
-
```
|
833 |
-
|
834 |
-
#### API้จ็ฝฒ
|
835 |
-
|
836 |
-
LMDeploy ็ `api_server` ไฝฟๆจกๅ่ฝๅค้่ฟไธไธชๅฝไปค่ฝปๆพๆๅ
ๆๆๅกใๆไพ็ RESTful API ไธ OpenAI ็ๆฅๅฃๅ
ผๅฎนใไปฅไธๆฏๆๅกๅฏๅจ็็คบไพ๏ผ
|
837 |
-
|
838 |
-
```shell
|
839 |
-
lmdeploy serve api_server OpenGVLab/InternVL2-8B --backend turbomind --server-port 23333
|
840 |
-
```
|
841 |
-
|
842 |
-
ไธบไบไฝฟ็จOpenAI้ฃๆ ผ็APIๆฅๅฃ๏ผๆจ้่ฆๅฎ่ฃ
OpenAI:
|
843 |
-
|
844 |
-
```shell
|
845 |
-
pip install openai
|
846 |
-
```
|
847 |
-
|
848 |
-
็ถๅ๏ผไฝฟ็จไธ้ข็ไปฃ็ ่ฟ่กAPI่ฐ็จ:
|
849 |
-
|
850 |
-
```python
|
851 |
-
from openai import OpenAI
|
852 |
-
|
853 |
-
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
854 |
-
model_name = client.models.list().data[0].id
|
855 |
-
response = client.chat.completions.create(
|
856 |
-
model=model_name,
|
857 |
-
messages=[{
|
858 |
-
'role':
|
859 |
-
'user',
|
860 |
-
'content': [{
|
861 |
-
'type': 'text',
|
862 |
-
'text': 'describe this image',
|
863 |
-
}, {
|
864 |
-
'type': 'image_url',
|
865 |
-
'image_url': {
|
866 |
-
'url':
|
867 |
-
'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
|
868 |
-
},
|
869 |
-
}],
|
870 |
-
}],
|
871 |
-
temperature=0.8,
|
872 |
-
top_p=0.8)
|
873 |
-
print(response)
|
874 |
-
```
|
875 |
-
|
876 |
-
## ๅผๆบ่ฎธๅฏ่ฏ
|
877 |
-
|
878 |
-
่ฏฅ้กน็ฎ้็จ MIT ่ฎธ๏ฟฝ๏ฟฝ่ฏๅๅธ๏ผ่ InternLM2 ๅ้็จ Apache-2.0 ่ฎธๅฏ่ฏใ
|
879 |
-
|
880 |
-
## ๅผ็จ
|
881 |
-
|
882 |
-
ๅฆๆๆจๅ็ฐๆญค้กน็ฎๅฏนๆจ็็ ็ฉถๆ็จ๏ผๅฏไปฅ่่ๅผ็จๆไปฌ็่ฎบๆ๏ผ
|
883 |
-
|
884 |
-
```BibTeX
|
885 |
@article{chen2023internvl,
|
886 |
title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
|
887 |
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
|
|
|
5 |
base_model:
|
6 |
- OpenGVLab/InternViT-300M-448px
|
7 |
- internlm/internlm2_5-7b-chat
|
8 |
+
new_version: OpenGVLab/InternVL2_5-8B
|
9 |
base_model_relation: merge
|
10 |
language:
|
11 |
- multilingual
|
|
|
20 |
|
21 |
# InternVL2-8B
|
22 |
|
23 |
+
[\[๐ GitHub\]](https://github.com/OpenGVLab/InternVL) [\[๐ Blog\]](https://internvl.github.io/blog/) [\[๐ InternVL 1.0\]](https://arxiv.org/abs/2312.14238) [\[๐ InternVL 1.5\]](https://arxiv.org/abs/2404.16821) [\[๐ Mini-InternVL\]](https://arxiv.org/abs/2410.16261)
|
24 |
|
25 |
[\[๐จ๏ธ Chat Demo\]](https://internvl.opengvlab.com/) [\[๐ค HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[๐ Quick Start\]](#quick-start) [\[๐ ไธญๆ่งฃ่ฏป\]](https://zhuanlan.zhihu.com/p/706547971) [\[๐ Documents\]](https://internvl.readthedocs.io/en/latest/)
|
26 |
|
27 |
+
<div align="center">
|
28 |
+
<img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
|
29 |
+
</div>
|
30 |
|
31 |
## Introduction
|
32 |
|
|
|
66 |
| MME<sub>sum</sub> | 2024.6 | 2187.8 | 2210.3 |
|
67 |
| RealWorldQA | 63.5 | 66.0 | 64.4 |
|
68 |
| AI2D<sub>test</sub> | 78.4 | 80.7 | 83.8 |
|
69 |
+
| MMMU<sub>val</sub> | 45.8 | 46.8 | 51.8 |
|
70 |
| MMBench-EN<sub>test</sub> | 77.2 | 82.2 | 81.7 |
|
71 |
| MMBench-CN<sub>test</sub> | 74.2 | 82.0 | 81.2 |
|
72 |
| CCBench<sub>dev</sub> | 45.9 | 69.8 | 75.9 |
|
|
|
79 |
|
80 |
- For more details and evaluation reproduction, please refer to our [Evaluation Guide](https://internvl.readthedocs.io/en/latest/internvl2.0/evaluation.html).
|
81 |
|
82 |
+
- We simultaneously use [InternVL](https://github.com/OpenGVLab/InternVL) and [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) repositories for model evaluation. Specifically, the results reported for DocVQA, ChartQA, InfoVQA, TextVQA, MME, AI2D, MMBench, CCBench, MMVet (GPT-4-0613), and SEED-Image were tested using the InternVL repository. MMMU, OCRBench, RealWorldQA, HallBench, MMVet (GPT-4-Turbo), and MathVista were evaluated using the VLMEvalKit.
|
|
|
|
|
83 |
|
84 |
- Please note that evaluating the same model using different testing toolkits like [InternVL](https://github.com/OpenGVLab/InternVL) and [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) can result in slight differences, which is normal. Updates to code versions and variations in environment and hardware can also cause minor discrepancies in results.
|
85 |
|
|
|
129 |
|
130 |
We also welcome you to experience the InternVL2 series models in our [online demo](https://internvl.opengvlab.com/).
|
131 |
|
132 |
+
> Please use transformers>=4.37.2 to ensure the model works normally.
|
133 |
|
134 |
### Model Loading
|
135 |
|
|
|
441 |
print(f'User: {question}\nAssistant: {response}')
|
442 |
```
|
443 |
|
444 |
+
#### Streaming Output
|
445 |
|
446 |
Besides this method, you can also use the following code to get streamed output.
|
447 |
|
|
|
481 |
LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
|
482 |
|
483 |
```sh
|
484 |
+
pip install lmdeploy>=0.5.3
|
485 |
```
|
486 |
|
487 |
LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
|
488 |
|
489 |
+
#### A 'Hello, world' Example
|
490 |
|
491 |
```python
|
492 |
from lmdeploy import pipeline, TurbomindEngineConfig
|
|
|
501 |
|
502 |
If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
|
503 |
|
504 |
+
#### Multi-images Inference
|
505 |
|
506 |
When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
|
507 |
|
|
|
526 |
print(response.text)
|
527 |
```
|
528 |
|
529 |
+
#### Batch Prompts Inference
|
530 |
|
531 |
Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
|
532 |
|
|
|
546 |
print(response)
|
547 |
```
|
548 |
|
549 |
+
#### Multi-turn Conversation
|
550 |
|
551 |
There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
|
552 |
|
|
|
616 |
If you find this project useful in your research, please consider citing:
|
617 |
|
618 |
```BibTeX
|
619 |
+
@article{gao2024mini,
|
620 |
+
title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
|
621 |
+
author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
|
622 |
+
journal={arXiv preprint arXiv:2410.16261},
|
|
|
|
|
|
|
|
|
|
|
|
|
623 |
year={2024}
|
624 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
625 |
@article{chen2023internvl,
|
626 |
title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
|
627 |
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
|
configuration_internvl_chat.py
CHANGED
@@ -39,11 +39,11 @@ class InternVLChatConfig(PretrainedConfig):
|
|
39 |
super().__init__(**kwargs)
|
40 |
|
41 |
if vision_config is None:
|
42 |
-
vision_config = {}
|
43 |
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
44 |
|
45 |
if llm_config is None:
|
46 |
-
llm_config = {}
|
47 |
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
48 |
|
49 |
self.vision_config = InternVisionConfig(**vision_config)
|
|
|
39 |
super().__init__(**kwargs)
|
40 |
|
41 |
if vision_config is None:
|
42 |
+
vision_config = {'architectures': ['InternVisionModel']}
|
43 |
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
44 |
|
45 |
if llm_config is None:
|
46 |
+
llm_config = {'architectures': ['InternLM2ForCausalLM']}
|
47 |
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
48 |
|
49 |
self.vision_config = InternVisionConfig(**vision_config)
|